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Introduction

• The Hamiltonian Monte Carlo (HMC) is an MCMC method
using the Hamiltonian dynamics.
• It is first introduced by Duane et al. (1987) for lattice field theory

simulations of quantum chromodynamics.
• They called it as “Hybrid Monte Carlo”.
• In statistical community, Neal (1996) firstly applied HMC to

neural network models.
• MacKay (2003) used the term “Hamiltonian Monte Carlo”.
• We start with a brief introduction to the Hamiltonian dynamics.
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Hamiltonian dynamics

Notations
• q ∈ Rd: position
• p ∈ Rd: momentum (= mv)

• U(q): potential energy (= mgh)

• K(p): kinetic energy (= |p|2/(2m))

• H(q, p): Hamiltonian

H(q, p) = U(q) + K(p)
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Hamilton’s equations

• Equations of motion: For i = 1, . . . , d,

q̇i =
dqi

dt
=
∂H
∂pi

ṗi =
dpi

dt
=−∂H

∂qi

• These equations define a mapping

Ts : (q(t), p(t)) 7→ (q(t + s), p(t + s)).
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Potential and kinetic energy for HMC

• For HMC, we usually use H(q, p) of the form

H(q, p) = U(q) + K(p)

with

K(p) =
1
2

pTM−1p,

where M is SPD.
• U(q) is the negative log probability density of interest.
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1-dim example

EXAMPLE Consider the Hamiltonian H(q, p) = U(q) + K(p) with

U(q) =
q2

2
, K(p) =

p2

2
.

Then,

dq
dt

= p,
dp
dt

= −q.

The solution is, for some constant r and a,

q(t) = r cos(a + t), p(t) = −r sin(a + t).
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Properties of H(p, q): Reversibility

• The Hamiltonian dynamics is reversible in the sense that the map
Ts : (q(t), p(t)) 7→ (q(t + s), p(t + s)) has an inverse T−s.
• If H(p, q) = U(q) + K(p) and K(p) = K(−p), the inverse T−s

can be obtained by
1 negating p,
2 applying Ts, and
3 negating p again.

• The reversibility will play an important role to prove that HMC
updates leave the distribution invariant.
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Properties of H(p, q): Invariance

• The dynamics keeps Hamiltonian invariant:

dH
dt

=

d∑
i=1

[
dqi

dt
∂H
∂qi

+
dpi

dt
∂H
∂pi

]

=

d∑
i=1

[
∂H
∂pi

∂H
∂qi
− ∂H
∂qi

∂H
∂pi

]
= 0
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Properties of H(p, q): Volume preservation

• (q, p) space is often called the phase space.
• Hamiltonian dynamics preserve volume in phase space

(Liouville’s theorem).
• Equivalently, the determinant of the 2d × 2d Jacobian matrix of

Ts has absolute value one.
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Discretization: Euler’s method

• Euler’s method updates

pi(t + ε) ≈ pi(t) + ε
dpi

dt
(t) = pi(t)− ε∂U

∂qi
(q(t))

qi(t + ε) ≈ qi(t) + ε
dqi

dt
(t) = qi(t) + ε

∂K
∂pi

(p(t))

for i = 1, . . . , d.

12 / 56



Discretization: A modified Euler’s method

• A modified Euler’s method updates

pi(t + ε)≈ pi(t)− ε∂U
∂qi

(q(t))

qi(t + ε)≈ qi(t) + ε
∂K
∂pi

(p(t + ε))

for i = 1, . . . , d.
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Discretization: The leapfrog method

• The leapfrog method updates

pi(t + ε/2)≈ pi(t)− ε

2
∂U
∂qi

(q(t))

qi(t + ε)≈ qi(t) + ε
∂K
∂pi

(p(t + ε/2))

pi(t + ε)≈ pi(t + ε/2)− ε

2
∂U
∂qi

(q(t + ε))

for i = 1, . . . , d.
• L-step leapfrog updates are similar to a modified Euler’s method

except for the first and last steps.
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Discretization: Summary
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Discretization: 1-dim illustration
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Remark

• In the previous example, if a smaller ε is considered for Euler’s
method, the divergence to infinity is slower, but not eliminated.
• The better performance of modified Euler and leapfrog methods

is related to the volume preservation.
• The leapfrog method is reversible by

1 negating p,
2 applying the same number of steps again, and
3 negating p again.

• If ε exceeds a certain threshold for the leapfrog method, the
trajectory will diverge.
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1-dim example

• Recall that H(q, p) = q2/2σ2 + p2/2.
• A one-step leapfrog update is linear:[

q(t + ε)
p(t + ε)

]
=

[
1− ε2/2σ2 ε

−ε/σ2 + ε3/4σ4 1− ε2/2σ2

]
︸ ︷︷ ︸

=A

[
q(t)
p(t)

]

• If ε > 2σ, λmax(A) > 1 and the trajectory will be unstable.
• If ε < 2σ, both eigenvalues are complex with absolute value 1,

so the the trajectory will be stable.
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Hamiltonian Monte Carlo

• Consider the target density of the form

π(q) ∝ e−U(q).

• We will construct a Markov chain with stationary distribution

π(q, p) ∝ e−H(q,p) = e−U(q)−K(p),

where K(p) = pTM−1p/2 for a SPD matrex M.
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Algorithm

1 Set tuning parameters (ε,L,M).

2 Initialize q(1).
3 For t = 1, 2, . . .

1 Sample p(t) ∼ N(0,M).
2 Starting from (q(t), p(t)), simulate Hamiltonian dynamics with

L-step leapfrog method with step size ε to obtain (q∗, p∗).
3 Negate p∗, that is, p∗ ← −p∗ (not necessary in practice).
4 Accept (q∗, p∗) with probability

min
{

1, e−H(q∗,p∗)+H(q(t),p(t))
}

= min
{

1, e−U(q∗)+U(q(t))−K(p∗)+K(p(t))
}
.

5 Set q(t+1) = q∗ if accepted, otherwise q(t+1) = q(t).
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Remark

• Obviously, updating p leave π(q, p) invariant.
• Without this step, H(q, p) will be (nearly) constant.
• It can be shown that the MH step also leaves π(q, p) invariant.
• Negation of p∗ makes the Metropolis proposal symmetrical.
• If the simulation of Hamiltonian dynamics is exact, the

acceptance probability is 1.
• The performance of HMC is sensitive to the choice of (ε,L,M).
• One can choose ε or L (or both) randomly.

22 / 56



Idea of proof for invariance

π(q, p) =
1
C

e−H(q,p)

• Let (Ak) be a partition of the phase space with small sets.
• Let K be the transition kernel obtained by

– operating L leapfrog steps,
– negating the momentum, and
– accept/reject the proposal.

• Let Bk be the image of Ak w.r.t. leapfrog updates and negation.
• Then, (Bk) is also a partition of the phase space.
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Idea of proof for invariance (cont.)

• Roughly, it suffices to prove the detailed balance:

Π(Ai)K(Bj | Ai) = Π(Bj)K(Ai | Bj)

• Note that K(Bj | Ai) = K(Ai | Bj) = 0 for i 6= j.

• Also, vol(Ak) = vol(Bk)
def
= V and H ≈ const. in small regions.

• For i = j = k, the above equation reduces

V
C

e−HAk min
{

1, e−HBk+HAk
}

=
V
C

e−HBk min
{

1, e−HAk+HBk
}
.
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Langevin Monte Carlo

• If L = 1 in HMC, it is called the Langevin MC (LMC).
– Firstly proposed in Rossky, Doll and Friedman (1978).
– Widely spread by Roberts and Stramer (2003).

• For simplicity, suppose that K(p) = pTp/2.
• Then, the one-step HMC proposal (q∗, p∗) is given as

q∗i = qi −
ε2

2
∂U
∂qi

(q) + εpi

p∗i = pi −
ε

2
∂U
∂qi

(q)− ε

2
∂U
∂qi

(q∗)

with the acceptance probability

min

{
1, exp

[
−{U(q∗)− U(q)} − 1

2

d∑
i=1

{
(p∗i )2 − p2

i
}]}

.
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Langevin Monte Carlo (cont.)

• One can derive the LMC without explicit mention of momentum
variables, by performing an MH with the proposal

q∗i | qi ∼ N
(

qi −
ε2

2
∂U
∂qi

(q), ε2
)
.

• In this case, the MH acceptance probability is

min

{
1,

d∏
i=1

exp[−{qi − q∗i + (ε2/2)[∂U/∂qi](q∗)}2/2ε2]

exp[−{q∗i − qi + (ε2/2)[∂U/∂qi](q)}2/2ε2]

}

which is the same to that from the one-step HMC.
• Note that the LMC returns a reversible MC.
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Illustration: 2-dim example 1

H(q, p) =
1
2

qTΣ−1q +
1
2

pTp, with Σ =

[
1 0.95

0.95 1

]

• Leapfrog updates with ε = 0.25 and L = 25:

27 / 56



Illustration: 2-dim example 2

H(q, p) =
1
2

qTΣ−1q +
1
2

pTp, with Σ =

[
1 0.98

0.98 1

]

• Comparison of HMC and random walk MH:
– HMC with ε = 0.18 and L = 20

• Rejection rate: 0.09
– Random walk with Gaussian proposal with σ = 0.18 and ρ = 0

• Every 20th state from 400 iterations are recorded.
• Rejection rate: 0.037
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Illustration: 2-dim example 2 (cont.)
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Illustration: 100-dim example

• U(q) = qTΣ−1q/2 with

Σ1/2 = diag(0.01, 0.02, . . . , 1.00).

• K(p) = pTp/2.
• The leapfrog updates operate independently for each (qi, pi).
• The acceptance probability depends on the total error in the

Hamiltonian.
• ε � 0.01 is required to keep this error small.
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Illustration: 100-dim example (cont.)

• Comparison:
– HMC

• L = 150
• ε ∼ Unif(0.013 ± 20%)
• Rejection rate: 0.13

– Random walk MH
• Independent Gaussian proposal
• σ = 0.022 ± 20%
• 150 updates as one iteration
• Rejection rate: 0.75

• Nearly optimal settings for both.
• Randomization of ε is necessary for avoiding

– periodicity, and
– danger caused by different stability limits.
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Illustration: 100-dim example (cont.)

Trace plots for the last component
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Illustration: 100-dim example (cont.)
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Effect of linear transformation

• Recall that the performance of a Gibbs sampler can be
significantly improved by a linear transformation.
• For A ∈ Rd×d, consider the Hamiltonians

H(q, p) = U(q) +
1
2

pTM−1p

H′(q′, p′) = U′(q′) + K′(p′),

where q′ = Aq, p′ = (AT)−1p ,

U′(q′) = U(A−1q′), K′(p′) =
1
2

(p′)T(M′)−1p′

and M′ = (AM−1AT)−1.
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Effect of linear transformation (cont.)

• The dynamics based on H′ satisfies

dq
dt

= M−1p and
dp
dt

= −∇U(q).

• As a consequence, HMCs based on H and H′ are the same.
• Practical tips when Σ = Var(q) is known:

– One may consider HMC with q′ = Σ−1/2q and K(p) = pTp/2.
– Equivalently, one may consider HMC with q and

K(p) = pTΣp/2.
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Remark

• The performance of HMC is very sensitive to the choice of
(ε,L,M).
• Roughly speaking, the computational complexity of HMC

(random walk MH, resp.) for moving to a (nearly) independent
state scales as d5/4 (d2, resp.) (in a toy example).
• There are several discretization methods of Hamilton’s equations

that are reversible, volume-preserving and have a higher order of
accuracy than the leapfrog method.
• In practice, however, it is difficult to beat the leapfrog method.
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Truncated multivariate normal
(Pakman and Paninski, 2014)

• Consider a truncated normal π(q) ∝ e−qT q/2 subject to

f T
j q + gj ≥ 0 j = 1, . . . ,m.

• Standard sampling technique is a Gibbs sampler.
(Geweke, 1991; Kotecha and Djuric, 1999)
• The above methods boils down to sampling from 1-dim

truncated normal. (Robert, 1995; Damien and Walker, 2001)
• The performance of Gibbs sampler is poor when the constrained

space is highly correlated.
• A state-of-the-art method relies on exact HMC.

(Pakman and Paninski, 2014)
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Truncated multivariate normal (cont.)
(Pakman and Paninski, 2014)

• Let

H(q, p) =
1
2

qTq +
1
2

pTp.

• Since the target is Gaussian, the solution of Hamilton’s eq.
(without constraints) can be obtained exactly:

qi(t) = ai sin(t) + bi cos(t)

ai = pi(0), bi = qi(0)

• The constraint can be regarded as a wall with infinite potential
energy.
• Once the particle hits a wall, it will bounce off the wall and the

trajectory continues with a reflected velocity.
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Truncated multivariate normal (cont.)
(Pakman and Paninski, 2014)

• The hitting time th can be calculated with elementary algebra.
• Suppose that the particle hits the hth wall, that is,

f T
h q(t) + gj = 0.

• Decompose the velocity as

q̇(th) = q̇⊥(th) + αhfh,

where

αh =
f T
h q̇(th)

‖fh‖2 .
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Truncated multivariate normal (cont.)
(Pakman and Paninski, 2014)

• Then, the reflected velocity is

q̇R(th) = q̇⊥(th)− αhfh.

• This reflection leaves the Hamiltonian invariant.
• The reflected velocity can be used as an initial condition to

continue the Hamiltonian dynamics.
• It is only required to determine the travel time.
• T = π/2 works well in practice.
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Truncated multivariate normal (cont.)
(Pakman and Paninski, 2014)
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Truncated multivariate normal (cont.)
(Pakman and Paninski, 2014)
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NUTS: No U-turn sampler
(Hoffman and Gelman, 2014)

• Suppose that K(p) = pTp/2 for simplicity.
• If the dynamics is simulated for long enough, running more

leapfrog updates would no longer increase the distance between
the proposal q∗ and the initial q.
• Thus, too large L would be computationally wasteful.
• One may stop the simulation if

d
dt
‖q∗ − q‖2

2 = (q∗ − q)Tp < 0.

• However, this naive stopping rule does not guarantee the
convergence to the correct distribution.
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NUTS: No U-turn sampler (cont.)
(Hoffman and Gelman, 2014)

• Hoffman and Gelman (2014) developed a “No-U-Turn Sampler”
to overcome this issue.
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Riemann manifold HMC
(Girolami and Calderhead, 2011)

• A parametric model {f (x | q) : q ∈ Q} is endowed with a natural
Riemann geometry via the Fisher informatin matrix M(q).
• For example, the distance between N(µ, σ2) and

N(µ+ δµ, σ2 + δ2σ2) is (δµ2 + 2δσ2)/σ2, which decreases as
σ2 increases.

• The Riemann geometry can be utilized in Langevin and
Hamiltonian MC methods to determine M.

– Firstly tried in HMC by Zlochin and Baram (2001).
– Girolami and Calderhead (2011) developed fundamental methods

for RMLMC and RMHMC.
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Riemann manifold HMC (cont.)
(Girolami and Calderhead, 2011)

Illustration of Riemann manifold LMC
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Riemann manifold HMC (cont.)
(Girolami and Calderhead, 2011)

• Let M(q) be the metric tensor for a given Riemann manifold.
• In a Bayesian framework, one may choose

M(q) = −Ex|q

[
∂2

∂q2 log{f (x, q)}
]

which is the expected Fisher information matrix plus the
negative Hessian of the log-prior.
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Riemann manifold HMC (cont.)
(Girolami and Calderhead, 2011)

• The Hamiltonian on a Riemann manifold is defined as

H(q, p) = U(q) +
1
2

log{(2π)d|M(q)|}+
1
2

pTM(q)−1p.

• Note that ∫
e−H(q,p)dp = e−U(q).

• Hamilton’s equations:

dqi

dt
=
∂H
∂pi

dpi

dt
=−∂H

∂qi
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Riemann manifold HMC (cont.)
(Girolami and Calderhead, 2011)

• The convergence to the correct distribution is not guaranteed
with a naive leapfrog update.
• Generalized leapfrog updates:

pi(t + ε/2)≈ pi(t)− ε

2
∂H
∂qi

(
q(t), p(t + ε/2)

)
qi(t + ε)≈ qi(t) +

ε

2

{
∂H
∂pi

(
q(t), p(t + ε/2)

)
+
∂H
∂pi

(
q(t + ε), p(t + ε/2)

)}
pi(t + ε)≈ pi(t + ε/2)− ε

2
∂H
∂qi

(
q(t + ε), p(t + ε/2)

)
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Riemann manifold HMC (cont.)
(Girolami and Calderhead, 2011)

Algorithm

1 Set tuning parameters (ε,L).

2 Initialize q(1).
3 For t = 1, 2, . . .

1 Sample p(t) ∼ N(0,M(q(t))).
2 Starting from (q(t), p(t)), run the generalized leapfrog steps with

parameters (ε,L) to obtain (q∗, p∗).
3 Accept (q∗, p∗) with probability

min
{

1, e−H(q∗,p∗)+H(q(t),p(t))
}

4 Set q(t+1) = q∗ if accepted, otherwise q(t+1) = q(t).
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Riemann manifold HMC (cont.)
(Girolami and Calderhead, 2011)

• The previous updates are the same to the leapfrog method if
H(q, p) = U(q) + K(p).
• Note that updates of p(t + ε/2) and q(t + ε) are defined

implicitly.
• In many examples, these implicit equations can be solved by 5-6

fixed point iterations.
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Stochastic gradient HMC
(Chen, Fox and Guestrin, 2014)

• Suppose that K(p) = pTM−1p/2 and

U(q) = − log π(q)−
n∑

i=1

log f (xi | q).

• In examples with huge data,∇U(q) is expensive to compute.
• At each step of HMC, one may approximate∇U(q) as

∇Ũ(q) = −∇ log π(q)− n
|I|
∑
i∈I

∇ log f (xi | q)

with a minibatch I.
• However, this approximation may change the limiting

distribution significantly.
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Stochastic gradient HMC (cont.)
(Chen, Fox and Guestrin, 2014)

• Roughly, suppose that

∇Ũ(q) ≈ ∇U(q) + N(0,V(q)).

• The resulting ε-discretization of p is

p(t + ε) ≈ p(t)− ε∇U(q) + N(0, ε2V(q))

• This can be viewed as a discretization of

dq = M−1pdt

dp =−∇U(q)dt + BdWt

for some B = B(q), where Wt is the standard Brownian motion.
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Stochastic gradient HMC (cont.)
(Chen, Fox and Guestrin, 2014)

• Physically, the additional term B(q)dWt can be regarded as
random wind.
• Chen, Fox and Guestrin (2014) proved that the Hamiltonian is

not invariant under the above dynamics.
• As an alternative, they introduce the dynamics

dq = M−1pdt

dp =−∇U(q)dt + BdWt − BM−1pdt

with which the Hamiltonian is invariant.
• Physically, the additional term BM−1pdt can be interpreted as

friction.
• In practice, B is unknown and should be estimated.
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Thank you for attention!
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