Introduction to Hamiltonian Monte Carlo methods

Minwoo Chae

Department of Industrial and Management Engineering Pohang University of Science and Technology

Seminar at Department of Statistics Seoul National University

Outline

- 1 Hamiltonian dynamics
- 2 Hamiltonian Monte Carlo
- 3 Advanced topics

Outline

- 1 Hamiltonian dynamics
- 2 Hamiltonian Monte Carlo
- 3 Advanced topics

Introduction

- The Hamiltonian Monte Carlo (HMC) is an MCMC method using the Hamiltonian dynamics.
- It is first introduced by Duane et al. (1987) for lattice field theory simulations of quantum chromodynamics.
- They called it as "Hybrid Monte Carlo".
- In statistical community, Neal (1996) firstly applied HMC to neural network models.
- MacKay (2003) used the term "Hamiltonian Monte Carlo".
- We start with a brief introduction to the Hamiltonian dynamics.

Hamiltonian dynamics

Notations

- $q \in \mathbb{R}^d$: position
- $p \in \mathbb{R}^d$: momentum (= mv)
- U(q): potential energy (= mgh)
- K(p): kinetic energy $(=|p|^2/(2m))$
- H(q,p): Hamiltonian

$$H(q,p) = U(q) + K(p)$$

Hamilton's equations

• Equations of motion: For i = 1, ..., d,

$$\dot{q}_{i} = \frac{dq_{i}}{dt} = \frac{\partial H}{\partial p_{i}}$$
$$\dot{p}_{i} = \frac{dp_{i}}{dt} = -\frac{\partial H}{\partial q_{i}}$$

• These equations define a mapping

$$T_s: (q(t), p(t)) \mapsto (q(t+s), p(t+s)).$$

Potential and kinetic energy for HMC

• For HMC, we usually use H(q, p) of the form

$$H(q,p) = U(q) + K(p)$$

with

$$K(p) = \frac{1}{2}p^T M^{-1}p,$$

where M is SPD.

• U(q) is the negative log probability density of interest.

1-dim example

EXAMPLE Consider the Hamiltonian H(q, p) = U(q) + K(p) with

$$U(q) = \frac{q^2}{2}, \quad K(p) = \frac{p^2}{2}.$$

Then,

$$\frac{dq}{dt} = p, \quad \frac{dp}{dt} = -q.$$

The solution is, for some constant r and a,

$$q(t) = r\cos(a+t), \quad p(t) = -r\sin(a+t).$$

Properties of H(p,q): Reversibility

- The Hamiltonian dynamics is reversible in the sense that the map $T_s: (q(t), p(t)) \mapsto (q(t+s), p(t+s))$ has an inverse T_{-s} .
- If H(p,q) = U(q) + K(p) and K(p) = K(-p), the inverse T_{-s} can be obtained by
 - 1 negating p,
 - 2 applying T_s , and
 - 3 negating p again.
- The reversibility will play an important role to prove that HMC updates leave the distribution invariant.

Properties of H(p,q): Invariance

• The dynamics keeps Hamiltonian invariant:

$$\frac{dH}{dt} = \sum_{i=1}^{d} \left[\frac{dq_i}{dt} \frac{\partial H}{\partial q_i} + \frac{dp_i}{dt} \frac{\partial H}{\partial p_i} \right]$$
$$= \sum_{i=1}^{d} \left[\frac{\partial H}{\partial p_i} \frac{\partial H}{\partial q_i} - \frac{\partial H}{\partial q_i} \frac{\partial H}{\partial p_i} \right] = 0$$

Properties of H(p,q): Volume preservation

- (q,p) space is often called the phase space.
- Hamiltonian dynamics preserve volume in phase space (Liouville's theorem).
- Equivalently, the determinant of the $2d \times 2d$ Jacobian matrix of T_s has absolute value one.

Discretization: Euler's method

• Euler's method updates

$$p_i(t+\epsilon) \approx p_i(t) + \epsilon \frac{dp_i}{dt}(t) = p_i(t) - \epsilon \frac{\partial U}{\partial q_i}(q(t))$$
$$q_i(t+\epsilon) \approx q_i(t) + \epsilon \frac{dq_i}{dt}(t) = q_i(t) + \epsilon \frac{\partial K}{\partial p_i}(p(t))$$
for $i = 1, \dots, d$.

12/56

Discretization: A modified Euler's method

• A modified Euler's method updates

$$p_i(t+\epsilon) \approx p_i(t) - \epsilon \frac{\partial U}{\partial q_i}(q(t))$$
$$q_i(t+\epsilon) \approx q_i(t) + \epsilon \frac{\partial K}{\partial p_i}(p(t+\epsilon))$$

for i = 1, ..., d.

Discretization: The leapfrog method

• The leapfrog method updates

$$p_{i}(t + \epsilon/2) \approx p_{i}(t) - \frac{\epsilon}{2} \frac{\partial U}{\partial q_{i}}(q(t))$$

$$q_{i}(t + \epsilon) \approx q_{i}(t) + \epsilon \frac{\partial K}{\partial p_{i}}(p(t + \epsilon/2))$$

$$p_{i}(t + \epsilon) \approx p_{i}(t + \epsilon/2) - \frac{\epsilon}{2} \frac{\partial U}{\partial q_{i}}(q(t + \epsilon))$$

for
$$i = 1, ..., d$$
.

 L-step leapfrog updates are similar to a modified Euler's method except for the first and last steps.

Discretization: Summary

Discretization: 1-dim illustration

Remark

- In the previous example, if a smaller ϵ is considered for Euler's method, the divergence to infinity is slower, but not eliminated.
- The better performance of modified Euler and leapfrog methods is related to the volume preservation.
- The leapfrog method is reversible by
 - 1 negating p,
 - 2 applying the same number of steps again, and
 - 3 negating p again.
- If ϵ exceeds a certain threshold for the leapfrog method, the trajectory will diverge.

1-dim example

- Recall that $H(q, p) = q^2/2\sigma^2 + p^2/2$.
- A one-step leapfrog update is linear:

$$\begin{bmatrix} q(t+\epsilon) \\ p(t+\epsilon) \end{bmatrix} = \underbrace{\begin{bmatrix} 1 - \epsilon^2/2\sigma^2 & \epsilon \\ -\epsilon/\sigma^2 + \epsilon^3/4\sigma^4 & 1 - \epsilon^2/2\sigma^2 \end{bmatrix}}_{=A} \begin{bmatrix} q(t) \\ p(t) \end{bmatrix}$$

- If $\epsilon > 2\sigma$, $\lambda_{\max}(A) > 1$ and the trajectory will be unstable.
- If $\epsilon < 2\sigma$, both eigenvalues are complex with absolute value 1, so the trajectory will be stable.

Outline

- 1 Hamiltonian dynamics
- 2 Hamiltonian Monte Carlo
- 3 Advanced topics

Hamiltonian Monte Carlo

• Consider the target density of the form

$$\pi(q) \propto e^{-U(q)}$$
.

• We will construct a Markov chain with stationary distribution

$$\pi(q, p) \propto e^{-H(q, p)} = e^{-U(q) - K(p)},$$

where $K(p) = p^T M^{-1} p/2$ for a SPD matrex M.

Algorithm

- 1 Set tuning parameters (ϵ, L, M) .
- 2 Initialize $q^{(1)}$.
- 3 For t = 1, 2, ...
 - 1 Sample $p^{(t)} \sim N(0, M)$.
 - 2 Starting from $(q^{(t)}, p^{(t)})$, simulate Hamiltonian dynamics with L-step leapfrog method with step size ϵ to obtain (q^*, p^*) .
 - 3 Negate p^* , that is, $p^* \leftarrow -p^*$ (not necessary in practice).
 - 4 Accept (q^*, p^*) with probability

$$\min\left\{1, e^{-H(q^*, p^*) + H(q^{(t)}, p^{(t)})}\right\} = \min\left\{1, e^{-U(q^*) + U(q^{(t)}) - K(p^*) + K(p^{(t)})}\right\}$$

5 Set $q^{(t+1)} = q^*$ if accepted, otherwise $q^{(t+1)} = q^{(t)}$.

Remark

- Obviously, updating p leave $\pi(q, p)$ invariant.
- Without this step, H(q, p) will be (nearly) constant.
- It can be shown that the MH step also leaves $\pi(q,p)$ invariant.
- Negation of p^* makes the Metropolis proposal symmetrical.
- If the simulation of Hamiltonian dynamics is exact, the acceptance probability is 1.
- The performance of HMC is sensitive to the choice of (ϵ, L, M) .
- One can choose ϵ or L (or both) randomly.

Idea of proof for invariance

$$\pi(q,p) = \frac{1}{C}e^{-H(q,p)}$$

- Let (A_k) be a partition of the phase space with small sets.
- Let *K* be the transition kernel obtained by
 - operating L leapfrog steps,
 - negating the momentum, and
 - accept/reject the proposal.
- Let B_k be the image of A_k w.r.t. leapfrog updates and negation.
- Then, (B_k) is also a partition of the phase space.

Idea of proof for invariance (cont.)

• Roughly, it suffices to prove the detailed balance:

$$\Pi(A_i)K(B_i \mid A_i) = \Pi(B_i)K(A_i \mid B_i)$$

- Note that $K(B_j \mid A_i) = K(A_i \mid B_j) = 0$ for $i \neq j$.
- Also, $\operatorname{vol}(A_k) = \operatorname{vol}(B_k) \stackrel{\text{def}}{=} V$ and $H \approx \text{const.}$ in small regions.
- For i = j = k, the above equation reduces

$$\frac{V}{C}e^{-H_{A_k}}\min\left\{1,e^{-H_{B_k}+H_{A_k}}\right\} = \frac{V}{C}e^{-H_{B_k}}\min\left\{1,e^{-H_{A_k}+H_{B_k}}\right\}.$$

Langevin Monte Carlo

- If L = 1 in HMC, it is called the Langevin MC (LMC).
 - Firstly proposed in Rossky, Doll and Friedman (1978).
 - Widely spread by Roberts and Stramer (2003).
- For simplicity, suppose that $K(p) = p^T p/2$.
- Then, the one-step HMC proposal (q^*, p^*) is given as

$$q_i^* = q_i - \frac{\epsilon^2}{2} \frac{\partial U}{\partial q_i}(q) + \epsilon p_i$$
$$p_i^* = p_i - \frac{\epsilon}{2} \frac{\partial U}{\partial q_i}(q) - \frac{\epsilon}{2} \frac{\partial U}{\partial q_i}(q^*)$$

with the acceptance probability

$$\min \left\{ 1, \exp \left[-\left\{ U(q^*) - U(q) \right\} - \frac{1}{2} \sum_{i=1}^d \left\{ (p_i^*)^2 - p_i^2 \right\} \right] \right\}.$$

Langevin Monte Carlo (cont.)

 One can derive the LMC without explicit mention of momentum variables, by performing an MH with the proposal

$$q_i^* \mid q_i \sim N\left(q_i - \frac{\epsilon^2}{2} \frac{\partial U}{\partial q_i}(q), \epsilon^2\right).$$

In this case, the MH acceptance probability is

$$\min \left\{ 1, \prod_{i=1}^{d} \frac{\exp[-\{q_i - q_i^* + (\epsilon^2/2)[\partial U/\partial q_i](q^*)\}^2/2\epsilon^2]}{\exp[-\{q_i^* - q_i + (\epsilon^2/2)[\partial U/\partial q_i](q)\}^2/2\epsilon^2]} \right\}$$

which is the same to that from the one-step HMC.

• Note that the LMC returns a reversible MC.

Illustration: 2-dim example 1

$$H(q,p) = \frac{1}{2}q^{T}\Sigma^{-1}q + \frac{1}{2}p^{T}p$$
, with $\Sigma = \begin{bmatrix} 1 & 0.95 \\ 0.95 & 1 \end{bmatrix}$

• Leapfrog updates with $\epsilon = 0.25$ and L = 25:

Illustration: 2-dim example 2

$$H(q,p) = \frac{1}{2}q^T \Sigma^{-1} q + \frac{1}{2}p^T p, \text{ with } \Sigma = \begin{bmatrix} 1 & 0.98 \\ 0.98 & 1 \end{bmatrix}$$

- Comparison of HMC and random walk MH:
 - HMC with $\epsilon = 0.18$ and L = 20
 - Rejection rate: 0.09
 - Random walk with Gaussian proposal with $\sigma = 0.18$ and $\rho = 0$
 - Every 20th state from 400 iterations are recorded.
 - Rejection rate: 0.037

Illustration: 2-dim example 2 (cont.)

Illustration: 100-dim example

•
$$U(q) = q^T \Sigma^{-1} q / 2$$
 with
$$\Sigma^{1/2} = \text{diag}(0.01, 0.02, \dots, 1.00).$$

- $K(p) = p^T p/2$.
- The leapfrog updates operate independently for each (q_i, p_i) .
- The acceptance probability depends on the total error in the Hamiltonian.
- $\epsilon \approx 0.01$ is required to keep this error small.

Illustration: 100-dim example (cont.)

- Comparison:
 - HMC
 - L = 150
 - $\epsilon \sim \text{Unif}(0.013 \pm 20\%)$
 - Rejection rate: 0.13
 - Random walk MH
 - Independent Gaussian proposal
 - $\sigma = 0.022 \pm 20\%$
 - 150 updates as one iteration
 - Rejection rate: 0.75
- Nearly optimal settings for both.
- Randomization of ϵ is necessary for avoiding
 - periodicity, and
 - danger caused by different stability limits.

Illustration: 100-dim example (cont.)

Trace plots for the last component

Illustration: 100-dim example (cont.)

Effect of linear transformation

- Recall that the performance of a Gibbs sampler can be significantly improved by a linear transformation.
- For $A \in \mathbb{R}^{d \times d}$, consider the Hamiltonians

$$H(q,p) = U(q) + \frac{1}{2}p^{T}M^{-1}p$$

 $H'(q',p') = U'(q') + K'(p'),$

where
$$q' = Aq, p' = (A^T)^{-1}p$$
,

$$U'(q') = U(A^{-1}q'), \quad K'(p') = \frac{1}{2}(p')^{T}(M')^{-1}p'$$

and
$$M' = (AM^{-1}A^T)^{-1}$$
.

Effect of linear transformation (cont.)

• The dynamics based on H' satisfies

$$\frac{dq}{dt} = M^{-1}p$$
 and $\frac{dp}{dt} = -\nabla U(q)$.

- As a consequence, HMCs based on H and H' are the same.
- Practical tips when $\Sigma = \text{Var}(q)$ is known:
 - One may consider HMC with $q' = \Sigma^{-1/2}q$ and $K(p) = p^T p/2$.
 - Equivalently, one may consider HMC with q and $K(p) = p^T \sum p/2$.

Remark

- The performance of HMC is very sensitive to the choice of (ϵ, L, M) .
- Roughly speaking, the computational complexity of HMC (random walk MH, resp.) for moving to a (nearly) independent state scales as $d^{5/4}$ (d^2 , resp.) (in a toy example).
- There are several discretization methods of Hamilton's equations that are reversible, volume-preserving and have a higher order of accuracy than the leapfrog method.
- In practice, however, it is difficult to beat the leapfrog method.

Outline

- 1 Hamiltonian dynamics
- 2 Hamiltonian Monte Carlo
- 3 Advanced topics

Truncated multivariate normal

(Pakman and Paninski, 2014)

• Consider a truncated normal $\pi(q) \propto e^{-q^T q/2}$ subject to

$$f_j^T q + g_j \ge 0$$
 $j = 1, \ldots, m$.

- Standard sampling technique is a Gibbs sampler. (Geweke, 1991; Kotecha and Djuric, 1999)
- The above methods boils down to sampling from 1-dim truncated normal. (Robert, 1995; Damien and Walker, 2001)
- The performance of Gibbs sampler is poor when the constrained space is highly correlated.
- A state-of-the-art method relies on exact HMC. (Pakman and Paninski, 2014)

(Pakman and Paninski, 2014)

Let

$$H(q,p) = \frac{1}{2}q^{T}q + \frac{1}{2}p^{T}p.$$

 Since the target is Gaussian, the solution of Hamilton's eq. (without constraints) can be obtained exactly:

$$q_i(t) = a_i \sin(t) + b_i \cos(t)$$

$$a_i = p_i(0), \quad b_i = q_i(0)$$

- The constraint can be regarded as a wall with infinite potential energy.
- Once the particle hits a wall, it will bounce off the wall and the trajectory continues with a reflected velocity.

(Pakman and Paninski, 2014)

- The hitting time t_h can be calculated with elementary algebra.
- Suppose that the particle hits the *h*th wall, that is,

$$f_h^T q(t) + g_j = 0.$$

• Decompose the velocity as

$$\dot{q}(t_h) = \dot{q}_{\perp}(t_h) + \alpha_h f_h,$$

where

$$\alpha_h = \frac{f_h^T \dot{q}(t_h)}{\|f_h\|^2}.$$

(Pakman and Paninski, 2014)

• Then, the reflected velocity is

$$\dot{q}_R(t_h) = \dot{q}_\perp(t_h) - \alpha_h f_h.$$

- This reflection leaves the Hamiltonian invariant.
- The reflected velocity can be used as an initial condition to continue the Hamiltonian dynamics.
- It is only required to determine the travel time.
- $T = \pi/2$ works well in practice.

(Pakman and Paninski, 2014)

(Pakman and Paninski, 2014)

NUTS: No U-turn sampler

(Hoffman and Gelman, 2014)

- Suppose that $K(p) = p^T p/2$ for simplicity.
- If the dynamics is simulated for long enough, running more leapfrog updates would no longer increase the distance between the proposal q^* and the initial q.
- Thus, too large *L* would be computationally wasteful.
- One may stop the simulation if

$$\frac{d}{dt}||q^* - q||_2^2 = (q^* - q)^T p < 0.$$

• However, this naive stopping rule does not guarantee the convergence to the correct distribution.

NUTS: No U-turn sampler (cont.)

(Hoffman and Gelman, 2014)

 Hoffman and Gelman (2014) developed a "No-U-Turn Sampler" to overcome this issue.

Riemann manifold HMC

(Girolami and Calderhead, 2011)

- A parametric model $\{f(x \mid q) : q \in \mathcal{Q}\}$ is endowed with a natural Riemann geometry via the Fisher informatin matrix M(q).
- For example, the distance between $N(\mu, \sigma^2)$ and $N(\mu + \delta\mu, \sigma^2 + \delta^2\sigma^2)$ is $(\delta\mu^2 + 2\delta\sigma^2)/\sigma^2$, which decreases as σ^2 increases.
- The Riemann geometry can be utilized in Langevin and Hamiltonian MC methods to determine M.
 - Firstly tried in HMC by Zlochin and Baram (2001).
 - Girolami and Calderhead (2011) developed fundamental methods for RMLMC and RMHMC.

(Girolami and Calderhead, 2011)

Illustration of Riemann manifold LMC

(Girolami and Calderhead, 2011)

- Let M(q) be the metric tensor for a given Riemann manifold.
- In a Bayesian framework, one may choose

$$M(q) = -\mathbf{E}_{x|q} \left[\frac{\partial^2}{\partial q^2} \log\{f(x,q)\} \right]$$

which is the expected Fisher information matrix plus the negative Hessian of the log-prior.

(Girolami and Calderhead, 2011)

• The Hamiltonian on a Riemann manifold is defined as

$$H(q,p) = U(q) + \frac{1}{2} \log\{(2\pi)^d |M(q)|\} + \frac{1}{2} p^T M(q)^{-1} p.$$

• Note that

$$\int e^{-H(q,p)}dp = e^{-U(q)}.$$

• Hamilton's equations:

$$\frac{dq_i}{dt} = \frac{\partial H}{\partial p_i}$$
$$\frac{dp_i}{dt} = -\frac{\partial H}{\partial q_i}$$

(Girolami and Calderhead, 2011)

- The convergence to the correct distribution is not guaranteed with a naive leapfrog update.
- Generalized leapfrog updates:

$$\begin{split} p_i(t+\epsilon/2) &\approx p_i(t) - \frac{\epsilon}{2} \frac{\partial H}{\partial q_i} \Big(q(t), p(t+\epsilon/2) \Big) \\ q_i(t+\epsilon) &\approx q_i(t) + \frac{\epsilon}{2} \left\{ \frac{\partial H}{\partial p_i} \Big(q(t), p(t+\epsilon/2) \Big) \right. \\ &\left. + \frac{\partial H}{\partial p_i} \Big(q(t+\epsilon), p(t+\epsilon/2) \Big) \right\} \\ p_i(t+\epsilon) &\approx p_i(t+\epsilon/2) - \frac{\epsilon}{2} \frac{\partial H}{\partial q_i} \Big(q(t+\epsilon), p(t+\epsilon/2) \Big) \end{split}$$

(Girolami and Calderhead, 2011)

Algorithm

- 1 Set tuning parameters (ϵ, L) .
- 2 Initialize $q^{(1)}$.
- 3 For t = 1, 2, ...
 - 1 Sample $p^{(t)} \sim N(0, M(q^{(t)}))$.
 - 2 Starting from $(q^{(i)}, p^{(t)})$, run the generalized leapfrog steps with parameters (ϵ, L) to obtain (q^*, p^*) .
 - 3 Accept (q^*, p^*) with probability

$$\min\left\{1, e^{-H(q^*, p^*) + H(q^{(t)}, p^{(t)})}\right\}$$

4 Set $q^{(t+1)} = q^*$ if accepted, otherwise $q^{(t+1)} = q^{(t)}$.

(Girolami and Calderhead, 2011)

- The previous updates are the same to the leapfrog method if H(q,p) = U(q) + K(p).
- Note that updates of $p(t + \epsilon/2)$ and $q(t + \epsilon)$ are defined implicitly.
- In many examples, these implicit equations can be solved by 5-6 fixed point iterations.

Stochastic gradient HMC

(Chen, Fox and Guestrin, 2014)

• Suppose that $K(p) = p^T M^{-1} p/2$ and

$$U(q) = -\log \pi(q) - \sum_{i=1}^{n} \log f(x_i \mid q).$$

- In examples with huge data, $\nabla U(q)$ is expensive to compute.
- At each step of HMC, one may approximate $\nabla U(q)$ as

$$\nabla \widetilde{U}(q) = -\nabla \log \pi(q) - \frac{n}{|I|} \sum_{i \in I} \nabla \log f(x_i \mid q)$$

with a minibatch I.

 However, this approximation may change the limiting distribution significantly.

Stochastic gradient HMC (cont.)

(Chen, Fox and Guestrin, 2014)

Roughly, suppose that

$$\nabla \widetilde{U}(q) \approx \nabla U(q) + N(0, V(q)).$$

• The resulting ϵ -discretization of p is

$$p(t + \epsilon) \approx p(t) - \epsilon \nabla U(q) + N(0, \epsilon^2 V(q))$$

• This can be viewed as a discretization of

$$dq = M^{-1}pdt$$
$$dp = -\nabla U(q)dt + BdW_t$$

for some B = B(q), where W_t is the standard Brownian motion.

Stochastic gradient HMC (cont.)

(Chen, Fox and Guestrin, 2014)

- Physically, the additional term $B(q)dW_t$ can be regarded as random wind.
- Chen, Fox and Guestrin (2014) proved that the Hamiltonian is not invariant under the above dynamics.
- As an alternative, they introduce the dynamics

$$dq = M^{-1}pdt$$

$$dp = -\nabla U(q)dt + BdW_t - BM^{-1}pdt$$

with which the Hamiltonian is invariant.

- Physically, the additional term $BM^{-1}pdt$ can be interpreted as friction.
- In practice, *B* is unknown and should be estimated.

Thank you for attention!