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Introduction

® The Hamiltonian Monte Carlo (HMC) is an MCMC method
using the Hamiltonian dynamics.

® It is first introduced by Duane et al. (1987) for lattice field theory
simulations of quantum chromodynamics.

® They called it as “Hybrid Monte Carlo”.

¢ [n statistical community, Neal (1996) firstly applied HMC to
neural network models.

® MacKay (2003) used the term “Hamiltonian Monte Carlo”.

® We start with a brief introduction to the Hamiltonian dynamics.
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Hamiltonian dynamics

Notations
® 4 € R?: position
® p € R%: momentum (= mv)
® U(q): potential energy (= mgh)
® K(p): kinetic energy (= |p|*/(2m))
® H(q,p): Hamiltonian

H(q,p) = U(q) + K(p)
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Hamilton’s equations

® Equations of motion: Fori =1,...,d,
. — 44 _ OH
4= dr Opi
. _dpi  OH
pi= dt  0Og;

® These equations define a mapping

Ty : (q(2),p(2) = (q(t +5),p(t +5)).
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Potential and kinetic energy for HMC

e For HMC, we usually use H(q, p) of the form

H(q,p) = U(g) + K(p)

with

1,
K(P):EPTM 'p,

where M is SPD.
® U(q) is the negative log probability density of interest.

7156



1-dim example

EXAMPLE Consider the Hamiltonian H(g,p) = U(q) + K(p) with

2 2
q 14
Ulg)=%, Kp)==2.
@=L kp)="2
Then,
dg _ ~ dp _
a VoY

The solution is, for some constant r and a,

q(t) =rcos(a+1), p(t)=—rsin(a+1).
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Properties of H(p, q): Reversibility

® The Hamiltonian dynamics is reversible in the sense that the map
Ty : (q(1),p(t)) — (q(t + 5),p(t + 5)) has an inverse T_;.
e If H(p,q) = U(q) + K(p) and K(p) = K(—p), the inverse T_;
can be obtained by
1 negating p,
2 applying Tj, and
3 negating p again.
® The reversibility will play an important role to prove that HMC
updates leave the distribution invariant.
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Properties of H(p, q): Invariance

® The dynamics keeps Hamiltonian invariant:

dH Zd: [dqi OH _dp; 81-1]

a2 dr dg, " di Op,

:Z{aHaH 8H8H}

< | 9p; Dq;  Dq; pi
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Properties of H(p, ¢): Volume preservation

® (g,p) space is often called the phase space.

® Hamiltonian dynamics preserve volume in phase space
(Liouville’s theorem).

e Equivalently, the determinant of the 2d x 2d Jacobian matrix of
T, has absolute value one.
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Discretization: Euler’s method

® Euler’s method updates

Pt = i) + B0 = 1)~ 5 (al0)
i1+ ) % ) + €gh D) = i) + (1)

fori=1,...,d.
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Discretization: A modified Euler’s method

® A modified Euler’s method updates

pi(t+e)=pi(t) — e%(q(t))
gt + )~ ailt) + egfiwm )

fori=1,...,d.
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Discretization: The leapfrog method

® The leapfrog method updates

P+ e/2)~pi0) - 55 ()

0K
qi(t + €)= qi(1) + Eaip(f’(t +¢€/2))
4
e U
pi(t+ €)= pi(t +¢/2) — 507,““ +€))
fori=1,...,d.
® [-step leapfrog updates are similar to a modified Euler’s method
except for the first and last steps.
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Discretization: Summary

Euler’s Method

update p update p update p

—~
4(0), p(0) a(e), p(e) [ae), p2e)|  [aGe), p(3e)|

update ¢ update ¢ update ¢

Modified Euler’s Method

update p update p
/\ /_\

(40,0 [a0).pe)]  [ae).pe)]  [ate).p2e)|  [ae).p2e)]
\_/ \_/
update ¢ update ¢

Leapfrog Method
half-update p update p half-update p

— — ™
[q(OJ,p(OWO).Ms/zw lae). p(e/2)] [ale).p(3e/2)] [a2e), p(3e/2)] [a(26), p(2¢)]
~— ~— —

update ¢ update g
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Discretization: 1-dim illustration

(a) Euler's Method, stepsize 0.3 (b) Modified Euler's Method, stepsize 0.3

momentum (p)
0
|
momentum (p)
0
L

position (q) position (q)

(c) Leapfrog Method, stepsize 0.3 (d) Leapfrog Method, stepsize 1.2

momentum (p)
0
L
momentum (p)
0
L

position (q) position (q)
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Remark

® In the previous example, if a smaller € is considered for Euler’s
method, the divergence to infinity is slower, but not eliminated.
® The better performance of modified Euler and leapfrog methods
is related to the volume preservation.
® The leapfrog method is reversible by
1 negating p,
2 applying the same number of steps again, and
3 negating p again.
® [f € exceeds a certain threshold for the leapfrog method, the
trajectory will diverge.
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1-dim example

Recall that H(q, p) = ¢*/20% + p*/2.
A one-step leapfrog update is linear:

] S I PO P | ]

=A

If € > 20, Amax(A) > 1 and the trajectory will be unstable.

If € < 20, both eigenvalues are complex with absolute value 1,
so the the trajectory will be stable.
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Hamiltonian Monte Carlo

® Consider the target density of the form

® We will construct a Markov chain with stationary distribution

7(q,p) o e—Hlap) — e—U(q)_K(p)7

where K(p) = pTM~!p/2 for a SPD matrex M.
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Algorithm

1 Set tuning parameters (e, L, M).
2 Initialize q(l).
3 Fort=1,2,...
1 Sample p\) ~ N(0,M).
2 Starting from (¢, p(*)), simulate Hamiltonian dynamics with
L-step leapfrog method with step size € to obtain (¢*, p*).
3 Negate p*, that is, p* <— —p™* (not necessary in practice).
4 Accept (¢*, p*) with probability

min {176—H<q*,p*>+H<q<’> ,p<'>>} = min { 1, e—U(q*)+U(q<'>)—k(p*>+1<(p<'>>}

5 Set gUt!) = ¢* if accepted, otherwise g+ = ¢,

21/56



Remark

® Obviously, updating p leave 7(q, p) invariant.

e Without this step, H(g, p) will be (nearly) constant.

® It can be shown that the MH step also leaves 7 (g, p) invariant.
® Negation of p* makes the Metropolis proposal symmetrical.

o [f the simulation of Hamiltonian dynamics is exact, the
acceptance probability is 1.

® The performance of HMC is sensitive to the choice of (¢, L, M).
® One can choose € or L (or both) randomly.
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Idea of proof for invariance

1

m(q.p) = ze 147

Let (Ax) be a partition of the phase space with small sets.

Let K be the transition kernel obtained by
— operating L leapfrog steps,
— negating the momentum, and
— accept/reject the proposal.

Let By be the image of Ay w.r.t. leapfrog updates and negation.

Then, (By) is also a partition of the phase space.
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Idea of proof for invariance (cont.)

Roughly, it suffices to prove the detailed balance:

II(A})K(B; | Ai) = IL(B))K (A; | B))

Note that K(B; | A;) = K(A; | B;) = 0fori # j.

Also, vol(Ay) = vol(Bx) &'V and H ~ const. in small regions.

® For i = j = k, the above equation reduces

vV _ . _ vV _ . -
Ee Ha, mln{l,e HBk+HAk} = Ee H, mln{l,e HAk+HBk}.
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Langevin Monte Carlo

e [f L = 1in HMC, it is called the Langevin MC (LMC).
— Firstly proposed in Rossky, Doll and Friedman (1978).

— Widely spread by Roberts and Stramer (2003).
e For simplicity, suppose that K(p) = p'p/2.
® Then, the one-step HMC proposal (¢*, p*) is given as

. EzaU()+
. = ;] — — — E€EpP;
q; = 4i 2aqiq Pi
e OU e U

*

Pi =Di — 5@(‘1) - 58711-(61 )

with the acceptance probability

min {l,exp

d
UG - Ula)} — 5 S {17 —p%}] }
i=1
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Langevin Monte Carlo (cont.)

® One can derive the LMC without explicit mention of momentum
variables, by performing an MH with the proposal

2
. e U
q; | gi~N <61i - 2%(51),62) .

® In this case, the MH acceptance probability is

win {1, [ O2L 0 = 0+ (2/2000/0a ) /2]
L exp[—{g7 — i + (2/2)[0U/04i](q)}? /2]

which is the same to that from the one-step HMC.
® Note that the LMC returns a reversible MC.
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[lustration: 2-dim example 1

Loy 1 . 1 095
H(g,p) = 54" 3 "'q+ 5p"p, with ¥ = [0.95 | ]

® | eapfrog updates with e = 0.25 and L = 25:

Position coordinates Momentum coordinates Value of Hamiltonian

] ; ‘ ] \\\ . .
- _7_7_,. N \\‘\\ i
NG

==
25

[

=
; 3
- L - \
= : T .
“o 2
g o - o |
B
—2 -1 o 1 2 72 71 0 1 2 o 5 10 15 20 25
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[lustration: 2-dim example 2

1 ey 1 . 1 0.98
H(q,p) = EqTE g+ Epr’ with ¥ = [0.98 | ]

® Comparison of HMC and random walk MH:
— HMC with e = 0.18 and L = 20
® Rejection rate: 0.09
— Random walk with Gaussian proposal with ¢ = 0.18 and p = 0

® Every 20th state from 400 iterations are recorded.
® Rejection rate: 0.037
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[lustration: 2-dim example 2 (cont.)

first position coordinate

Random-walk Metropolis

Hamiltonian Monte Carlo

o~ - 4
.
¥y
d
o4 4
w4 4
0

4 4

T T T T T T T T T T

-2 -1 0 1 2 -2 -1 0 1 2

Random-walk Metropolis Hamiltonian Monte Carlo

® N

first position coordinate
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[llustration: 100-dim example

® Ug) = q">1q/2 with
/2 = diag(0.01,0.02, . .., 1.00).

K(p) =p'p/2.
The leapfrog updates operate independently for each (g, p;).

The acceptance probability depends on the total error in the
Hamiltonian.

€ < 0.01 is required to keep this error small.
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[llustration: 100-dim example (cont.)

e Comparison:
- HMC
* L=150
® ¢ ~ Unif(0.013 4+ 20%)
® Rejection rate: 0.13
— Random walk MH
® Independent Gaussian proposal
o =0.022 +£20%
150 updates as one iteration
Rejection rate: 0.75

® Nearly optimal settings for both.

® Randomization of € is necessary for avoiding
— periodicity, and
— danger caused by different stability limits.

31/56



[llustration: 100-dim example (cont.)

Trace plots for the last component

last position coordinate

Random-walk Metropolis

A

{' ©
| \x*yﬁ'&ﬁ‘ “

T
0

T T T T
200 400 600 800

iteration

T
1000

last position coordinate

Hamiltonian Monte Carlo

o o . .
Lt et L " .
LR
L SN -.:.‘e“.'::_.';::‘

a8 o N

0 200 400 600 800

T T T T T T
1000

iteration
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Illustration:

100-dim example (cont.)

sample mean of coordinate

sample standard deviation of coordinate

02 04 06

-04 -02 00

12 -06

10

0.2

0.0

Random-walk Metropolis

Hamiltonian Monte Carlo

04 06

02

sample mean of coordinate

-04 -02 00

-06

T
00

T T T T T
0.2 0.4 06 08 10

standard deviation of coordinate

12

T
0.0

T T T T
0.2 04 0.6 08
standard deviation of coordinate

T
10

sample standard deviation of coordinate

10

0.2

00

T T T T
0.2 0.4 0.6 08
standard deviation of coordinate

10

0.0

0.

0

T T T T
02 0.4 06 08
standard deviation of coordinate

1.0
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Effect of linear transformation

® Recall that the performance of a Gibbs sampler can be
significantly improved by a linear transformation.

® For A € R?*4_consider the Hamiltonians

1 _
H(q,p)=U(q) + EpTM 'p

H'(d,p")=U'(d) +K'(p),
where ¢ = Aq, p' = (AT)"'p,
U/(ql) — U(A_lq,), K/(p/) — *(p/)T(M/)_lp/

and M' = (AM—'AT)~1,
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Effect of linear transformation (cont.)

® The dynamics based on H' satisfies

dq _ -1 dp
— =M d —=-VU(q).
= p and — (9)
® As a consequence, HMCs based on H and H' are the same.

® Practical tips when X = Var(q) is known:

— One may consider HMC with ¢’ = ¥~'2g and K (p) = p"p/2.

— Equivalently, one may consider HMC with g and
K(p) =p"Sp/2.
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Remark

® The performance of HMC is very sensitive to the choice of
(e,L,M).

® Roughly speaking, the computational complexity of HMC
(random walk MH, resp.) for moving to a (nearly) independent
state scales as d°/4 (d?, resp.) (in a toy example).

® There are several discretization methods of Hamilton’s equations
that are reversible, volume-preserving and have a higher order of
accuracy than the leapfrog method.

® In practice, however, it is difficult to beat the leapfrog method.
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Truncated multivariate normal
(Pakman and Paninski, 2014)

Consider a truncated normal 7(g) o e~ 4/2 subject to
fla+g>0 j=1,....m.

Standard sampling technique is a Gibbs sampler.
(Geweke, 1991; Kotecha and Djuric, 1999)

The above methods boils down to sampling from 1-dim
truncated normal. (Robert, 1995; Damien and Walker, 2001)

The performance of Gibbs sampler is poor when the constrained
space is highly correlated.

A state-of-the-art method relies on exact HMC.
(Pakman and Paninski, 2014)
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Truncated multivariate normal (cont.)

(Pakman and Paninski, 2014)

® Jet

1 1
H(g,p) = EqTq + Epr'

® Since the target is Gaussian, the solution of Hamilton’s eq.
(without constraints) can be obtained exactly:

qi(t) = a;sin(t) + b; cos(t)
a; =pi(0), bi = ¢i(0)

® The constraint can be regarded as a wall with infinite potential
energy.

® Once the particle hits a wall, it will bounce off the wall and the
trajectory continues with a reflected velocity.
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Truncated multivariate normal (cont.)
(Pakman and Paninski, 2014)

® The hitting time #;, can be calculated with elementary algebra.
® Suppose that the particle hits the sth wall, that is,

fia(t) +g =0.
® Decompose the velocity as
q(th) = q.(tn) + cufi,

where

 fram)

o = .
[1full?
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Truncated multivariate normal (cont.)

(Pakman and Paninski, 2014)

® Then, the reflected velocity is
qr(tn) = q1(tn) — anfi-
® This reflection leaves the Hamiltonian invariant.
® The reflected velocity can be used as an initial condition to
continue the Hamiltonian dynamics.
® It is only required to determine the travel time.
e T = m/2 works well in practice.
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Truncated multivariate normal (cont.)
(Pakman and Paninski, 2014)
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Truncated multivariate normal (cont.)
(Pakman and Paninski, 2014)

Exact HMC Gibbs sampler
6 8
> 40 >4
=
2f 2
1 2 3 4 5 6 1 2 3 4 5 6
X X
[
- ool -
2 2p S
0 100 200 300 400 0 100 200 300 400

Iteration Iteration
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NUTS: No U-turn sampler

(Hoffman and Gelman, 2014)

e Suppose that K (p) = p”p/2 for simplicity.
o [f the dynamics is simulated for long enough, running more

leapfrog updates would no longer increase the distance between
the proposal ¢* and the initial g.

® Thus, too large L would be computationally wasteful.

® One may stop the simulation if

‘i * 2 * T
— — = — < 0.
dth qlz = (¢ q)'p

® However, this naive stopping rule does not guarantee the
convergence to the correct distribution.
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NUTS: No U-turn sampler (cont.)

(Hoffman and Gelman, 2014)

® Hoffman and Gelman (2014) developed a “No-U-Turn Sampler”
to overcome this issue.
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Riemann manifold HMC

(Girolami and Calderhead, 2011)

® A parametric model {f(x | ¢) : ¢ € Q} is endowed with a natural
Riemann geometry via the Fisher informatin matrix M(q).

® For example, the distance between N (1, 0%) and
N(p+ 6, 0% + 6°0?) is (§u® + 2602) /o2, which decreases as
o increases.

® The Riemann geometry can be utilized in Langevin and
Hamiltonian MC methods to determine M.

— Firstly tried in HMC by Zlochin and Baram (2001).
— Girolami and Calderhead (2011) developed fundamental methods
for RMLMC and RMHMC.

46/56



Riemann manifold HMC (cont.)
(Girolami and Calderhead, 2011)

Illustration of Riemann manifold LMC

40

35

30

25F™

20

©

40

35

30

25

20

15

10
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Riemann manifold HMC (cont.)

(Girolami and Calderhead, 2011)

® Let M(q) be the metric tensor for a given Riemann manifold.

® In a Bayesian framework, one may choose

2
Mq) = —Ey, [;’q log /(. q)}]

which is the expected Fisher information matrix plus the
negative Hessian of the log-prior.
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Riemann manifold HMC (cont.)

(Girolami and Calderhead, 2011)

® The Hamiltonian on a Riemann manifold is defined as

Hig.p) = Ulg) + 5 log{ (2m)'|M(@)]} + 30" M(a)'p.

® Note that
/ ~H@P) g — o=Ula)

® Hamilton’s equations:

day _oH
dl‘_api
dpi  OH

dt g
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Riemann manifold HMC (cont.)

(Girolami and Calderhead, 2011)

® The convergence to the correct distribution is not guaranteed
with a naive leapfrog update.

® Generalized leapfrog updates:

e+ /20 = 5 5o (a0 + </2)
e+ I~ a0+ 5{ 57 (at0.ple + 2)

+gZ (q(t +e),p(t+ 6/2)) }

P+ i+ e/~ S50 (alr+ up+ €/2)
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Riemann manifold HMC (cont.)

(Girolami and Calderhead, 2011)

Algorithm
1 Set tuning parameters (€, L).
2 Initialize q(l).
3 Fortr=1,2,...
I Sample p() ~ N(0,M(¢")).
2 Starting from (¢, p\*)), run the generalized leapfrog steps with

parameters (e, L) to obtain (¢*, p*).
3 Accept (¢*, p*) with probability

min {1, e H@ ") +H (" ,p(’))}

4 Set ¢gU"t1) = g* if accepted, otherwise ¢('t!) = ¢(.
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Riemann manifold HMC (cont.)

(Girolami and Calderhead, 2011)

® The previous updates are the same to the leapfrog method if
H(q,p) = U(q) + K(p).

® Note that updates of p(¢ + €/2) and g(t + ¢€) are defined
implicitly.

* In many examples, these implicit equations can be solved by 5-6
fixed point iterations.
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Stochastic gradient HMC

(Chen, Fox and Guestrin, 2014)
e Suppose that K(p) = p"M~'p/2 and

U(q) = —log7(q Z logf(x; | q)-

¢ In examples with huge data, VU(q) is expensive to compute.

® At each step of HMC, one may approximate VU (q) as
VU(q) = —Vlogn(q) |I|ZV10gfx,\q)
iel

with a minibatch /.

® However, this approximation may change the limiting
distribution significantly.
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Stochastic gradient HMC (cont.)

(Chen, Fox and Guestrin, 2014)

® Roughly, suppose that
VU(q) = VU(q) +N(0,V(q))-
® The resulting e-discretization of p is
pt+e) = p(t) — eVU(q) + N(0,€V(q))
® This can be viewed as a discretization of

dg=M""'pdt
dp =—-VU(q)dt + BdW,;

for some B = B(q), where W, is the standard Brownian motion.
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Stochastic gradient HMC (cont.)

(Chen, Fox and Guestrin, 2014)

® Physically, the additional term B(q)dW; can be regarded as
random wind.

® Chen, Fox and Guestrin (2014) proved that the Hamiltonian is
not invariant under the above dynamics.

® As an alternative, they introduce the dynamics

dg=M""'pdt
dp = —VU(q)dt + BdW, — BM ' pdr

with which the Hamiltonian is invariant.

e Physically, the additional term BM~!pdt can be interpreted as
friction.

® In practice, B is unknown and should be estimated.
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Thank you for attention!
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