Counterfactual Fairness

20.07.02 Presenter : YC, Choi

Counterfactual Fairness

When Worlds Collide: Integrating Different Counterfactual Assumptions in Fairness

(ロ)、(型)、(E)、(E)、 E) の(()

Contents

Counterfactual Fairness

When Worlds Collide: Integrating Different Counterfactual Assumptions in Fairness

(ロ)、(型)、(E)、(E)、 E) の(()

Notation

- A : the set of protected attributes
- X : observable attributes
- U : latent attributes
- Y : the outcome to be predicted
- \hat{Y} : predictor, a random variable that depends on A, X, U

Other fairness measure

- Fairness Through Unawareness(FTU)
 An algorithm is fair so long as any protected attributes A are not explicitly used
 in the decision-making process.
- Individual Fairness(IF)
 If individual i and j are similar under a metric d(·, ·), then their predictions should be similar (Ŷ(X⁽ⁱ⁾, A⁽ⁱ⁾) ≈ Ŷ(X^(j), A^(j)).

Other fairness measure

3. Demographic Parity(DP) A predictor \hat{Y} satisfies demographic parity if $P(\hat{Y}|A=0) = P(\hat{Y}|A=1)$

4. Equality of Opportunity(EO) A predictor \hat{Y} satisfies equality of opportunity if $P(\hat{Y} = 1|A = 0, Y = 1) = P(\hat{Y} = 1|A = 1, Y = 1)$

Causal Models and Counterfactuals

- Causal model is defined by (U, V, F)
- V : observable variables
- \blacktriangleright U : set of latent background variable, which are factors not caused by V
- ▶ *F* is a set of functions $\{f_1, \ldots, f_n\}$ such that $V_i = f_i(pa_i, U_{pa_i})$ where $pa_i \subseteq V \setminus \{V_i\}, U_{pa_i} \subseteq U$ pa_i referes to the "parents" of V_i

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Causal Models and Counterfactuals

- Intervention on variable V_i substitution of equation V_i = f_i(pa_i, U_{pa_i}) with the equation V_i = v
- Counterfactual
 - the value of Y if A had taken value a
 - solution for Y given U = u where the equations for A are replace with A = a

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

- $Y_{A\leftarrow a}(u)$ or Y_a

Counterfactual Fairness

▶ (Definition) Predictor Y is counterfactually fair if any context X = x and A = a $P(Y_{A\leftarrow a}(U) = y | X = x, A = a) = P(Y_{A\leftarrow a'}(U) = y | X = x, A = a)$ for all y and for any value a' attainable by A

Counterfactual Fairness

• (Lemma) Let \mathcal{G} be the causal graph of the given model (U, V, F). Then \hat{Y} will be counterfactually fair if it is a function of the non-descendants of A is invariant with respect to the counterfactual values of A.

Algorithm

- $\hat{Y} \equiv g_{\theta}(U, X_{\neq A})$: predictor parameterized by θ
- ► $X_{\forall A} \subset X$: non-descendants of A
- $\mathcal{D} \equiv \{(A^{(i)}, X^{(i)}, Y^{(i)} : i = 1, ..., n\} : \text{training data}\}$
- \blacktriangleright $I(\cdot, \cdot)$: loss function(squared loss or log-likelihood)

1: **procedure** FAIRLEARNING(\mathcal{D}, \mathcal{M}) \triangleright Learned parameters $\hat{\theta}$

- 2:
- For each data point $i \in \mathcal{D}$, sample m MCMC samples $U_1^{(i)}, \ldots, U_m^{(i)} \sim P_{\mathcal{M}}(U \mid x^{(i)}, a^{(i)})$. Let \mathcal{D}' be the augmented dataset where each point $(a^{(i)}, x^{(i)}, y^{(i)})$ in \mathcal{D} is replaced with the 3. corresponding *m* points $\{(a^{(i)}, x^{(i)}, y^{(i)}, u^{(i)}_{i})\}$.

- $\hat{\theta} \leftarrow \operatorname{argmin}_{\theta} \sum_{i' \in \mathcal{D}'} l(y^{(i')}, g_{\theta}(U^{(i')}, x_{\mathcal{J}_{A}}^{(i')})).$ 4:
- 5: end procedure

Contents

Counterfactual Fairness

When Worlds Collide: Integrating Different Counterfactual Assumptions in Fairness

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

- The previous method requires that one provides the causal model that generated the data at hand
- There are infinitely many structural equations compatible with the same observable distribution.
- It is desirable to integrate competing causal models to provide counterfactually fair decisions

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Definition

► (e, 0) - ACF(Approximate Counterfactual Fairness) A predictor f(X, A) satisfies (e, 0) - ACF if given the sensitivity attribute A = a and any instantiation x of the other observed variable X, we have that

$$|f(x_{A\leftarrow a},a) - f(x_{A\leftarrow a'},a')| < \epsilon$$
(5)

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

for all
$$a' \neq a$$

• $(\epsilon, \delta) - ACF$
 f satisfies $(\epsilon, \delta) - ACF$ if
 $\mathbb{P}_{U}(|f(\mathcal{X}_{A\leftarrow a}, a) - f(\mathcal{X}_{A\leftarrow a'}, a')| < \epsilon |\mathcal{X} = x, A = a) > 1 - \delta$ (6)

Algorithm

▶ objective function :
$$\min_{f} \frac{1}{n} \sum_{i=1}^{n} l(f(x_{i}, a_{i}), y_{i}) + \lambda \sum_{j=1}^{m} \frac{1}{n} \sum_{i=1}^{n} \sum_{a' \neq a_{i}} \mu_{j}(f, x_{i}, a_{i}, a') \quad (7)$$

$$\text{where } \mu_{j}(f, x_{i}, a_{i}, a') := \mathbb{I}[|f(x_{A \leftarrow a}, a) - f(X_{A \leftarrow a'}), a')| > \epsilon]$$

$$\text{surrogated version : } \mu_{j}(f, x_{i}, a_{i}, a') := \max\{0, |f(x_{A \leftarrow a}, a) - f(X_{A \leftarrow a'}, a')| - \epsilon\}$$

$$\text{maximum risk version : } \lambda \sum_{j=1}^{m} \max_{i} \sum_{a' \neq a_{i}} \mu_{j}(f, x_{i}, a_{i}, a')$$

Algorithm

Algorithm 1 Multi-World Fairness

- Input: features X = [x₁,..., x_n], labels y = [y₁,..., y_n], sensitive attributes a = [a₁,..., a_n], privacy parameters (ε, δ), trade-off parameters L = [λ₁,..., λ_l].
- 2: Fit causal models: M_1, \ldots, M_m using X, a (and possibly y).
- 3: Sample counterfactuals: $\mathcal{X}_{A^1 \leftarrow a'}, \ldots, \mathcal{X}_{A^m \leftarrow a'}$ for all unobserved values a'.
- 4: for $\lambda \in \mathcal{L}$ do
- 5: Initialize classifier f_{λ} .
- 6: while loop until convergence do
- 7: Select random batches \mathbf{X}_b of inputs and batch of counterfactuals $\mathbf{X}_{A^1 \leftarrow a'}, \dots, \mathbf{X}_{A^m \leftarrow a'}$.
- 8: Compute the gradient of equation (7).
- 9: Update f_{λ} using any stochastic gradient optimization method.
- 10: end while
- 11: end for
- Select model f_λ: For deterministic models select the smallest λ such that equation (5) using f_λ holds. For non-deterministic models select the λ that corresponds to δ given f_λ.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Law School Admission Council data.
- A : race(protected attribute)
- ► G : GPA, L : law school entrance exam score
- Y : First year average grade.
- Law school may be interested in predicting Y for all applicants to law school in order to decide whether to accept or deny them entrance.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Causal model

$$\begin{split} & G = b_G + w_G^A A + \epsilon_G & G \sim \mathcal{N}(b_G + w_G^A A + w_G^U U, \sigma_G) \\ & L = b_L + w_L^A A + \epsilon_L & L \sim \text{Poisson}(\exp(b_L + w_L^A A + w_L^U U)) \\ & Y = b_Y + w_Y^A A + \epsilon_Y & Y \sim \mathcal{N}(w_Y^A A + w_Y^U U, 1) \\ & \epsilon_G, \epsilon_L, \epsilon_Y \sim \mathcal{N}(0, 1) & U \sim \mathcal{N}(0, 1) \end{split}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ○ ○ ○ ○

ablation study about λ
λ ∈ {10⁻⁵, 10⁻⁴, ..., 10¹⁰}

Figure 1: (LEFT)paper simulation (Right) Ours

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Figure 2: (LEFT) λ : 0.01 (Right) λ : 0.1

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ