
Practical Secure Aggregation for Privacy-Preserving
Machine Learning (Ch 3.2, 3.4)

Insung Kong

Seoul National University

Department of Statistics

July 29, 2020

Insung Kong (SNU) Practical Secure Aggregation for Privacy-Preserving Machine Learning (Ch 3.2, 3.4)July 29, 2020 1 / 18



Overview

1 3.2 Key Agreement
What is Key Agreement
Structure of Key Agreement
Some assumptions for Key Agreement

2 3.4 Pseudorandom Generator

Insung Kong (SNU) Practical Secure Aggregation for Privacy-Preserving Machine Learning (Ch 3.2, 3.4)July 29, 2020 2 / 18



Section 1

3.2 Key Agreement

Insung Kong (SNU) Practical Secure Aggregation for Privacy-Preserving Machine Learning (Ch 3.2, 3.4)July 29, 2020 3 / 18



Key Agreement

Alice want to send some file to Bob, but adversaries Eve can
intercept file.

Insung Kong (SNU) Practical Secure Aggregation for Privacy-Preserving Machine Learning (Ch 3.2, 3.4)July 29, 2020 4 / 18



Key Agreement

If they have beforehand shared key, they can protect content of
file.

But It’s impossible to prepare shared key for all paired people.

Key Agreement can make shared secret key safely through
unsafe channel.

Insung Kong (SNU) Practical Secure Aggregation for Privacy-Preserving Machine Learning (Ch 3.2, 3.4)July 29, 2020 5 / 18



Key Agreement example - Diffie-Hellman key exchange

1 Alice and Bob determine prime p, and g ∈ {1, 2, ..., p−1} together.
Eve can intercept it.

2 Alice makes secret private key a, Bob makes secret private key b.
Eve can’t intercept it.

3 Alice makes her public key A ≡ ga(mod p) and shares it.
Bob makes his public key B ≡ gb(mod p) and shares it.
Eve can intercept it.

4 Alice calculate Ba (mod p), Bob calculate Ab (mod p).
Then they get shared secret key gab (mod p).

If p, a, b are large enough, Eve can’t find shared secret key

Insung Kong (SNU) Practical Secure Aggregation for Privacy-Preserving Machine Learning (Ch 3.2, 3.4)July 29, 2020 6 / 18



Terms in this section

Adversary : malicious entity whose aim is to prevent the users of
the cryptosystem from achieving their goal

Passive adversary : one that can listen to your communications,
but cannot directly tamper with them.
Active adversary : one that can listen to your communications,
and also can directly tamper with them.
PPT adversary : an adversary who runs in probabilistic
polynomial time algorithm.

Hash function : it converts data with any length to fixed length
data.

H : {0,1}˚ → {0,1}k.

Insung Kong (SNU) Practical Secure Aggregation for Privacy-Preserving Machine Learning (Ch 3.2, 3.4)July 29, 2020 7 / 18



Key Agreement - Structure

Key Agreement consists of a tuple of algorithms :
(KA.param, KA.gen, KA.agree).

KA.param(k)→ pp produces some public parameters,

KA.gen(pp)→ (sSKu , sPK
u ) allows any user u to generate a

private-public key pair,

KA.agree(sSKu , sPK
v )→ su,v allows any user u to combine their

private key sSKu with the public key sPK
v for any v.

Insung Kong (SNU) Practical Secure Aggregation for Privacy-Preserving Machine Learning (Ch 3.2, 3.4)July 29, 2020 8 / 18



Key Agreement - Structure

In the Diffie-Hellman key exchange,

KA.param(k)→ (G′, g, q,H) samples group G′ of prime order q,
a generator g, and a hash function H : {0, 1}˚ → {0, 1}k

KA.gen(G′, g, q,H)→ (x, gx) samples a random x ∈ G′ as the
secret key sSKu , and gx as the public key sPK

u

KA.agree(xu, g
xv)→ su,v outputs su,v = H((gxv)xu).

Insung Kong (SNU) Practical Secure Aggregation for Privacy-Preserving Machine Learning (Ch 3.2, 3.4)July 29, 2020 9 / 18



Definition 3.1 (Decisional Diffie-Hellman assumption)

We want that following two probability distributions are
computationally indistinguishable in polynomial time.

(ga, gb, gab), where a and b are randomly and independently chosen
from Zq

(ga, gb, gc), where a, b, c are randomly and independently chosen
from Zq

Insung Kong (SNU) Practical Secure Aggregation for Privacy-Preserving Machine Learning (Ch 3.2, 3.4)July 29, 2020 10 / 18



Definition 3.1 (Decisional Diffie-Hellman assumption)

Let G(k)→ (G′,g,q,H) be an efficient algorithm which samples a
group G′ of order q with generator g, as well as a function
H : {0,1}˚ → {0,1}k.
Consider the following probabilistic experiment, parameterized by a
PPT adversary M, and a security parameter k.

DDH−ExpG,M(k) :

1 (G′, g, q,H)← G(k)

2 a← Zq ; A← ga

3 b← Zq ; B ← gb

4 e
$← {0, 1}. if e=1, s← H(gab), else s

$← {0, 1}k

5 M(G′, g, q,H,A,B, s)→ e′

6 Output 1 if e=e’ , 0 otherwise.

Insung Kong (SNU) Practical Secure Aggregation for Privacy-Preserving Machine Learning (Ch 3.2, 3.4)July 29, 2020 11 / 18



Definition 3.1 (Decisional Diffie-Hellman assumption)

DDH−ExpG,M(k) :

1 (G′, g, q,H)← G(k)

2 a← Zq ; A← ga

3 b← Zq ; B ← gb

4 e
$← {0, 1}. if e=1, s← H(gab), else s

$← {0, 1}k

5 M(G′, g, q,H,A,B, s)→ e′

6 Output 1 if e = e′ , 0 otherwise.

The advantage of the adversary is defined as

AdvDDH
G,M (k) := 2 Pr [DDH − ExpG,M (k) = 1]− 1

We say that the Decisional Diffie-Hellman assumption holds for G if for
all PPT adversaries M, there exists a negligible function ε such that
AdvDDH

G,M (k) ≤ ε(k)

Insung Kong (SNU) Practical Secure Aggregation for Privacy-Preserving Machine Learning (Ch 3.2, 3.4)July 29, 2020 12 / 18



Definition 3.2 (Two Oracle Diffie-Hellman assumption)

To prove security against active adversaries, we need a
somewhat stronger security guarantee for Key Agreement.

Assume adversary can get public keys sPK
u and sPK

v , and also
have the ability to learn KA.agree(sSKu , s) and KA.agree(sSKv , s)
for any s 6= sPK

u , sPK
v .

We want this adversary still cannot distinguish su,v from a
random string.

Insung Kong (SNU) Practical Secure Aggregation for Privacy-Preserving Machine Learning (Ch 3.2, 3.4)July 29, 2020 13 / 18



Definition 3.2 (Two Oracle Diffie-Hellman assumption)

Let G(k)→ (G′,g,q,H) be an efficient algorithm which samples a
group G′ of order q with generator g, as well as a function
H : {0,1}˚ → {0,1}k.
Consider the following probabilistic experiment, parameterized by a
PPT adversary M, and a security parameter k.

2ODH−ExpG,M(k) :

1 (G′, g, q,H)← G(k) ; a← Zq ; A← ga ; b← Zq ; B ← gb

2 e
$← {0, 1}. if e=1, s← H(gab), else s

$← {0, 1}k

3 MOa(·),Ob(·)(G′, g, q,H,A,B, s)→ e′

4 Output 1 if e = e′ , 0 otherwise.

where Oa(X) returns H(Xa) on any X 6= B(and an error on input B),
and Ob(X) returns H(Xb) on any X 6= A(and an error on input A)

Insung Kong (SNU) Practical Secure Aggregation for Privacy-Preserving Machine Learning (Ch 3.2, 3.4)July 29, 2020 14 / 18



Definition 3.2 (Two Oracle Diffie-Hellman assumption)

2ODH−ExpG,M(k) :

1 (G′, g, q,H)← G(k) ; a← Zq ; A← ga ; b← Zq ; B ← gb

2 e
$← {0, 1}. if e=1, s← H(gab), else s

$← {0, 1}k

3 MOa(·),Ob(·)(G′, g, q,H,A,B, s)→ e′

4 Output 1 if e = e′ , 0 otherwise.

where Oa(X) returns H(Xa) on any X 6= B(and an error on input B),
and Ob(X) returns H(Xb) on any X 6= A(and an error on input A)

The advantage of the adversary is defined as

Adv2ODH
G,M (k) := 2 Pr

[
2ODH − Exp1

G,M (k) = 1
]
− 1

We say that the Two Oracle Diffie-Hellman assumption holds for G if
for all PPT adversaries M, there exists a negligible function ε such that
AdvDDH

G,M (k) ≤ ε(k)

Insung Kong (SNU) Practical Secure Aggregation for Privacy-Preserving Machine Learning (Ch 3.2, 3.4)July 29, 2020 15 / 18



Section 2

3.4 Pseudorandom Generator

Insung Kong (SNU) Practical Secure Aggregation for Privacy-Preserving Machine Learning (Ch 3.2, 3.4)July 29, 2020 16 / 18



Pseudorandom Generator

PRG(Pseudorandom Generator) takes in a uniformly random
seed of some fixed length, and whose output space is [0, R)m.

Security for a PRG guarantees that its output is
computationally indistinguishable from a uniformly
sampled element of the output space.

Insung Kong (SNU) Practical Secure Aggregation for Privacy-Preserving Machine Learning (Ch 3.2, 3.4)July 29, 2020 17 / 18



Pseudorandom Generator

Linear Congruential Generator is most common and oldest
algorithm for generating pseudo-randomized numbers.
The generator is defined by the recurrence relation:

Linear Congruential Generator

Xn+1 = aXn + c (mod R)

where X is the sequence of pseudo-random values,

m, 0 < R - modulus

a, 0 < a < R - multiplier

c, 0 < c < R - increment

x0, 0 ≤ x0 < R - the seed or start value

Insung Kong (SNU) Practical Secure Aggregation for Privacy-Preserving Machine Learning (Ch 3.2, 3.4)July 29, 2020 18 / 18


	3.2 Key Agreement
	What is Key Agreement
	Structure of Key Agreement
	Some assumptions for Key Agreement

	3.4 Pseudorandom Generator

