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Introduction

> An algorithm is individual fair if it gives similar predictions to similar

individuals, i.e.,
P(Y; = y1Xi) = P(Y; = yIX))| < & if d(Xi, X)) = 0

where i, j denote two individuals.

> d(i,j) is a distance metric between two individuals, and here we assume

d(i,j) is given for specific task.



Treating similar individuals similarly

> In a binary classification problem, we consider randomized mappings
M: X — A(Y) from individuals to probability distribution over outcomes.
To classify x € X choose an outcome y according to the distribution
M(Y = y|x).

» Find a mapping from individuals to distribution over outcomes that

minimizes expected loss subject to the (D, d)-Lipschitz condition,
D(M(:|x), M(-|¥)) < d(x,X), Vx,X € X

where D is a measure of similarity of distributions.
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Treating similar individuals similarly

» Denote 7 as an instance, and L as a loss function.
» The Fairness LP:
def . N S o
ont(Z) Lmin [ 3730 LMY= JXPLx Y =)o
*ye{0,1} ye{0.1} (1)
subject to Vx, X' € X' : D(M(-|x), M(:|X)) < d(x,x)



Probability metrics

v

Let P, Q denote probability measures on a finite domian A

v

Total variation norm between P and @

Du(P, Q) = Z|P

aEA

v

Relative ¢, norm between P and Q:

D~(7.@ = supis (mox{ 535, 53 })

v

Lemma. Let D € {Dx,

~ }. Given an instance Z, we can compute opt(Z)
with a linear program of size poly(|X|,|Y|) (w.r.t. M)
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Introduction

> In the previous work, the individual-fair learning algorithm is

computationally intractable (even for simple fair-learning tasks).
» Suppose a similariy metric d is given.

> The author proposed a approximately individual-fair condition which is a

relaxed version of the previous individaul fairness.



Approximate Metric-Fariness

» Def. A predictor h is («,y)-approximately metric-fair (MF) w.r.t. a
similarity metric d and a data distribution D if

L5 = Peyopllh(x) — h(x)| > d(x,x) +1] < o

» If « =0, then £f, means perfect MF.
» Notation

> H®7: the set of functions which satisfy («, v)-approximate MF on D
» H®7: the set of functions which satisfy (a,y)-approximate MF on the

training set.



Fair learning

» Objective for fair learning:
minimize, errs(h) subject to h € H*

where S is a training set, errs(h) denotes the expected ¢; error of h.

» Since H*7 in the contraint induces 0/1 loss, they use empirical ¢, MF

violation £s(h) given by

es(h) = 3 max(0, [h(x) — h(x)| - d(x,X)).

x,x' €S

» For some 7 € [0, 1],

minimizey, errs(h) subject to &s(h) < 7.



Main contributions

> (Generalization) This fair learning guaranteeing fairness not just for the
training sets but also for the underlying population distribution, under

some conditions.

» (Efficiency) This algorithm guarantees to contruct polynomial-time
learning algorithm which satisfies approximate MF and best-possible

accuracy (for classes of linear and logistic predictors).
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Introduction

> We consider the linear contextual bandits problem with strong individual

fairness constraints.

» In this paper, a class of distance functions is specified by Mahalanobis

distance (i.e., for some matrix A, d(x1,x2) = ||Axi — Axz2||2).



Linear Contextual Bandits

» Notation

> t: round, t € [T]

> k: number of multi-arms

> Xf € RY: contexts vector of an arm i in round t

> t: chosen arm at round t after observing contexts

> rfT: after choosing an arm, observed some stochastic reward s.t. rft is
sub-gaussian and E[r}] =< x},0 > where 0 € RY is a coefficient vector

> ht=((xt, it rh), .. (xtL, it 1)): a history at round t

> 7t = wf(ht, x*) € A[K]: the probability distribution over actions that the

algorithm plays action i at round t

> Note that the algorithm does not observe the reward for the actions not

chosen.



Fairness Constraints and Feedback

» Def 1. Algorithm L is Lipschitz-fair on round t w.r.t. d if for all i, j:
= ] < o )
» Def 2 (Fairness Oracle). Given d, a fairness oracle Oy defined as follows:
Oy(x', %) = {(i,J) « [mj — mj| > d(x, %))}

> Assumption: algorithm L have access to a fairness oracle, use this feedback

to learn d



Best Fair Policy

Inround t=1,..., T,

1.

Parameter estimation: ¢ = (X7 Xt + AN "1XT R
where X' = [x},...,x 'Jand R\ = [r},..., A "]

3 Mg q ) Vg q

. Reward estimation and UCB (upper confidence bound): # =< ¢, xt > and

# =7+ B with (|7 7| < B) =14

. Policy estimation: given #* = (#,...,#), d* = (d(x, x}))i<),

K
tat 3t ~t
7w (£,d") =argmax it
TEAK] ; 2)

subject to |m; — ;| < d(x}, x}), Y(i, j)



Estimation for d

nt = n(7,d)
Pull an arm i
Si= Od(xt,T(t) .
R={(i,)I(i,j) €S Alp} - pjl = d;)

for (i,j) € S do
DistanceEstimator;;.f eedback(1)
v,-tj =1

t t

according to 7' and receive a reward r,

end

for (i,j) € R do
DistanceEstimator;;.f eedback(T)
vfj =1

end
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Notation

: the set of protected attributes
: observable attributes

. latent attributes

v
< < X >

: the outcome to be predicted

v
=<

: predictor, a random variable that depends on A, X, U



Causal Models and Counterfactuals

v

Causal model is defined by (U, V, F)

» V : observable variables

v

U : set of latent background variable, which are factors not caused by V
> Fis a set of functions {fi,..., fr} such that V; = fi(pai, Up,,) where
pai € VA {Vi}, Ups C U

pa; referes to the “parents” of V;

law school




Causal Models and Counterfactuals

> Intervention on variable V;
substitution of equation V; = fi(pa;, Ups;) with the equation V;=v
» Counterfactual

> the value of Yif A had taken value a
> solution for Y given U = u where the equations for A are replace with A = a

> Yaca(u)orYs



Counterfactual Fairness

> (Definition) Predictor Y is counterfactually fair if any context X = x and
A=a

P(Yaca(U) =yIX=x,A=23) = P(Yacx(U) =y X=x,A=a)

for all y and for any value a’ attainable by A



Counterfactual Fairness

» (Lemma) Let G be the causal graph of the given model (U, V, F). Then Y
will be counterfactually fair if it is a function of the non-descendants of A

is invariant with respect to the counterfactual values of A.



Algorithm

> Y= 80(U, Xy.a) : predictor parameterized by 6
> Xya C X : non-descendants of A
» D= {(AD XD ¥ . j=1 ... n}: training data

> I(-,-) : loss function(squared loss or log-likelihood)

1: procedure FAIRLEARNING(D, M) > Learned parameters 4

2: For each data point i € D, sample m MCMC samples Ul("'), s U,(,f) ~ Ppg(U | 2@, al?),

3:  LetD’ be the augmented dataset where each point (a®), z(%), y(?) in D is replaced with the
corresponding m points {(a(®), z(#), (), ui.”)}.

4: 0« argming Zz’eD* l(y“,), gg(U("’] s m(;l))

5: end procedure
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Introduction

» The previous method requires that one provides the causal model that
generated the data at hand

> There are infinitely many structural equations compatible with the same
observable distribution.

> |t is desirable to integrate competing causal models to provide

counterfactually fair decisions



Definition

> (¢,0)-ACF (Approximate Counterfactual Fairness)
A predictor f{X, A) satisfies (¢,0)-ACF if given the sensitivity attribute
A = a and any instantiation x of the other observed variable X', we have
that

|f(XA<—a» a) - f(XA<—a’7 a/)‘ <e€

for all & # a
> (e,6)-ACF
f satisfies (e, §)-ACF if

]P)U(|f(XA<—av a) - f(XAeaH a/)‘ < E|X = XvA = a) >1-6



Algorithm

> objective function :

n

min % D I(fxi ), yi) + A % D> wilfxiad) (7)
i=1 j=1

=1 3/ #a

where ,Ug'(f,X,’, ai, al) = H[|f(X"7A<—aiv ai) - f(Xi,Aea’)y a/)‘ > 6]
> surrogated version :

wi(f, xi, ai, 3/) = max{O, | f(Xi, Aaj, @) — f(Xi,A<—a’)a 3/)| - 5}



Algorithm

Algorithm 1 Multi-World Fairness

—

10:
11:
12:

voIanhwN

: Input: features X = [x1,...,%y], labels y = [y1, ..., yn], sensitive attributes a = [ay, ..., a,),

privacy parameters (e, ), trade-off parameters £ = [Aq,..., A;].
Fit causal models: M, ..., M,, using X, a (and possibly y).

: Sample counterfactuals: X 41, o/, ..., Xam o for all unobserved values a’.

for A € Ldo
Initialize classifier f.
while loop until convergence do
Select random batches X, of inputs and batch of counterfactuals X g1, 47, ..., Xamqr-
Compute the gradient of equation (7).
Update f) using any stochastic gradient optimization method.
end while
end for
Select model f): For deterministic models select the smallest A such that equation (5) using fx
holds. For non-deterministic models select the A that corresponds to § given f.
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Introduction

> In this paper, consider multiple classification tasks.

(ex. ads for internet users, public school admissions)

» Average Individual Fairness constraints: standard statistics (such as error

or FP/FN rates) should be approximately equalized across all individuals
» Here, ‘rate’ is defined as the average over classification tasks.

> Given a sample of individuals and classification problems, authors design

an algorithm for the fair empirical risk minimization task.



Notations

> i€ [n]: index for a individual, j € [m]: index for a classification task

v

P: probability measure over X, Q: probability measure over the space of

problems F

v

Dataset: D = {x;, (6(x,))1”;1}7:1 where fi(x;) € {0, 1} is the label

corresponding to x; for the jth classification task.

\{

Denote p = (p1, p2, .- ., Pm) as learning m randomized classifieres, where

pj is the learned classifier for the jth classification task.



Definitions

» Def 1. (Individual and Overall Error Rates)

The individual error rate of x incurred by p is defined as follows:
E(x,p; Q) = Ervo [Phnp[h(x) # f(x)]]
The overall error rate of p is defined as follows:
err(p; P, Q) = Ex~r [E(x,p; Q)]

» Def 2. (Average Individual Fairness, AlF)
We say p satisfies “(«, 8)-AIF” w.r.t. (P, Q) if there exists v > 0 s.t.:

]PXNP (‘5(X,p; Q) - ’Y| > Oé) < ﬂ



Method

» Fair Learning Problem subject to («, 0)-AlIF

min _ err(p; P, Q)

p,v€[0,1]

st.VxeX: |E(x,p; Q) — 7| < «



Method-Empirical version

> The empirical versions of the overall error rate and the individual error

rates can be expressed as:

err(p;75 Q ZS X, p; @ Z ZP;, i~p;h

» Empirical Fair Learning Problem
min  err(p; P, Q)
p,v€[0,1]

st.¥x€X: [£(x,p;Q) — 9| < 2a,

slightly relaxed

# fi(xi)]
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