Individual Fairness Al Reviews

Sarah Kim

August 4, 2020

Table of Contents

Metric Based

Fairness Through Awareness (2012)

Probably Approximately Metric-Fair Learning (2018)

Bandit Problem Based

Online Learning with an Unknown Fairness Metric (2018)

Counterfactual Based

Counterfactual Fairness (2017)

When Worlds Collide: Integrating Different Counterfactual Assumptions in Fairness (2017)

Multiple classifications based

Average Individual Fairness (2019)

Table of Contents

Metric Based

Fairness Through Awareness (2012)

Probably Approximately Metric-Fair Learning (2018)

Bandit Problem Based

Online Learning with an Unknown Fairness Metric (2018)

Counterfactual Based

Counterfactual Fairness (2017)

When Worlds Collide: Integrating Different Counterfactual Assumptions in Fairness (2017)

Multiple classifications based

Average Individual Fairness (2019

Introduction

 An algorithm is individual fair if it gives similar predictions to similar individuals, i.e.,

$$\left| P(\hat{Y}_i = y | X_i) - P(\hat{Y}_j = y | X_j) \right| \le \epsilon; \text{ if } d(X_i, X_j) \approx 0$$

where i, j denote two individuals.

ullet d(i,j) is a distance metric between two individuals, and here we assume d(i,j) is given for specific task.

Treating similar individuals similarly

- In a binary classification problem, we consider randomized mappings $M: \mathcal{X} \to \Delta(\mathcal{Y})$ from individuals to probability distribution over outcomes. To classify $x \in \mathcal{X}$ choose an outcome y according to the distribution M(Y = y|x).
- ► Find a mapping from individuals to distribution over outcomes that minimizes expected loss subject to the (D, d)-Lipschitz condition,

$$D(M(\cdot|x), M(\cdot|x')) \le d(x, x'), \ \forall x, x' \in \mathcal{X}$$

where D is a measure of similarity of distributions.

Treating similar individuals similarly

- In a binary classification problem, we consider randomized mappings $M: \mathcal{X} \to \Delta(\mathcal{Y})$ from individuals to probability distribution over outcomes. To classify $x \in \mathcal{X}$ choose an outcome y according to the distribution M(Y = y|x).
- ► Find a mapping from individuals to distribution over outcomes that minimizes expected loss subject to the (D, d)-Lipschitz condition,

$$D(M(\cdot|x), M(\cdot|x')) \le d(x, x'), \ \forall x, x' \in \mathcal{X}$$

where D is a measure of similarity of distributions.

Treating similar individuals similarly

- ▶ Denote \mathcal{I} as an instance, and L as a loss function.
- ► The Fairness I P:

$$\operatorname{opt}(\mathcal{I}) \stackrel{\text{def}}{=} \min_{M} \int_{x} \sum_{y \in \{0,1\}} \sum_{\hat{y} \in \{0,1\}} L(y,\hat{y}) M(Y = \hat{y}|x) P(x, Y = y) dx
\operatorname{subject to } \forall x, x' \in \mathcal{X} : D(M(\cdot|x), M(\cdot|x')) < d(x, x')$$
(1)

Probability metrics

- Let P, Q denote probability measures on a finite domian A.
- ▶ Total variation norm between *P* and *Q*:

$$D_{\mathsf{tv}}(P, Q) = \frac{1}{2} \sum_{\mathsf{a} \in A} |P(\mathsf{a}) - Q(\mathsf{a})|$$

▶ Relative ℓ_{∞} norm between P and Q:

$$D_{\infty}(P,Q) = \sup_{a \in A} \log \left(\max \left\{ \frac{P(a)}{Q(a)}, \frac{Q(a)}{P(a)} \right\} \right)$$

▶ **Lemma.** Let $D \in \{D_{tv}, D_{\infty}\}$. Given an instance \mathcal{I} , we can compute opt(\mathcal{I}) with a linear program of size poly($|\mathcal{X}|, |\mathcal{Y}|$) (w.r.t. M).

Table of Contents

Metric Based

Fairness Through Awareness (2012)

Probably Approximately Metric-Fair Learning (2018)

Bandit Problem Based

Online Learning with an Unknown Fairness Metric (2018)

Counterfactual Based

Counterfactual Fairness (2017)

When Worlds Collide: Integrating Different Counterfactual Assumptions in Fairness (2017)

Multiple classifications based

Average Individual Fairness (2019

Introduction

- ▶ In the previous work, the individual-fair learning algorithm is computationally intractable (even for simple fair-learning tasks).
- ▶ Suppose a similariy metric *d* is given.
- ► The author proposed a approximately individual-fair condition which is a relaxed version of the previous individual fairness.

Approximate Metric-Fariness

▶ **Def.** A predictor h is (α, γ) -approximately metric-fair (MF) w.r.t. a similarity metric d and a data distribution \mathcal{D} if

$$\mathcal{L}^F_{\gamma} := P_{x,x' \sim \mathcal{D}}[|h(x) - h(x')| > d(x,x') + \gamma] \leq \alpha.$$

- If $\alpha = 0$, then \mathcal{L}_{γ}^{F} means perfect MF.
- Notation
 - $lackbox{H}^{lpha,\gamma}$: the set of functions which satisfy $(lpha,\gamma)$ -approximate MF on $\mathcal D$
 - $ightharpoonup\widehat{H}^{lpha,\gamma}$: the set of functions which satisfy $(lpha,\gamma)$ -approximate MF on the training set.

Fair learning

Objective for fair learning:

$$minimize_h \ err_S(h) \ subject \ to \ h \in \widehat{H}^{\alpha,\gamma}$$

where S is a training set, $err_S(h)$ denotes the expected ℓ_1 error of h.

▶ Since $\widehat{H}^{\alpha,\gamma}$ in the contraint induces 0/1 loss, they use empirical ℓ_1 MF violation $\xi_S(h)$ given by

$$\xi_{S}(h) = \sum_{x,x' \in S} \max(0, |h(x) - h(x')| - d(x,x')).$$

 $\qquad \qquad \mathbf{For\ some}\ \tau\in[0,1],$

minimize_h $err_S(h)$ subject to $\xi_S(h) \leq \tau$.

Main contributions

- (Generalization) This fair learning guaranteeing fairness not just for the training sets but also for the underlying population distribution, under some conditions.
- ▶ (Efficiency) This algorithm guarantees to contruct polynomial-time learning algorithm which satisfies approximate MF and best-possible accuracy (for classes of linear and logistic predictors).

Table of Contents

Metric Based

Fairness Through Awareness (2012)

Probably Approximately Metric-Fair Learning (2018)

Bandit Problem Based

Online Learning with an Unknown Fairness Metric (2018)

Counterfactual Based

Counterfactual Fairness (2017)

When Worlds Collide: Integrating Different Counterfactual Assumptions in

Fairness (2017)

Multiple classifications based

Average Individual Fairness (2019

Introduction

- We consider the linear contextual bandits problem with strong individual fairness constraints.
- ▶ In this paper, a class of distance functions is specified by Mahalanobis distance (i.e., for some matrix A, $d(x_1, x_2) = ||Ax_1 Ax_2||_2$).

Linear Contextual Bandits

Notation

- ▶ t: round, $t \in [T]$
- ▶ k: number of multi-arms
- $\mathbf{x}_i^t \in \mathbb{R}^d$: contexts vector of an arm i in round t
- $ightharpoonup i^t$: chosen arm at round t after observing contexts
- ▶ $r_{i^t}^t$: after choosing an arm, observed some stochastic reward s.t. $r_{i^t}^t$ is sub-gaussian and $\mathbb{E}[r_{i^t}^t] = \langle x_{i^t}^t, \theta \rangle$ where $\theta \in \mathbb{R}^d$ is a coefficient vector
- ▶ $h^t = ((\mathbf{x}^1, i^1, r^1), \dots, (\mathbf{x}^{t-1}, i^{t-1}, r^{t-1}))$: a history at round t
- $\pi^t = \pi^t(h^t, \mathbf{x}^t) \in \Delta[k]$: the probability distribution over actions that the algorithm plays action i at round t
- Note that the algorithm does not observe the reward for the actions not chosen.

Fairness Constraints and Feedback

▶ **Def 1.** Algorithm *L* is Lipschitz-fair on round *t* w.r.t. *d* if for all *i*, *j*:

$$|\pi_i^t - \pi_j^t| \leq d(x_i^t, x_j^t).$$

▶ **Def 2 (Fairness Oracle).** Given d, a fairness oracle O_d defined as follows:

$$O_d(x^t, \pi^t) = \{(i, j) : |\pi_i^t - \pi_j^t| > d(x_i^t, x_j^t)\}$$

 Assumption: algorithm L have access to a fairness oracle, use this feedback to learn d

Best Fair Policy

In round $t = 1, \ldots, T$,

- 1. Parameter estimation: $\hat{\theta}^t = (X^{t\top}X^t + \lambda I)^{-1}X^{t\top}R^t$ where $X^t = [x^1_{i_1}, \dots, x^{t-1}_{i_{t-1}}]$ and $R^t = [r^1_{i_1}, \dots, r^{t-1}_{i_{t-1}}]$
- 2. Reward estimation and UCB (upper confidence bound): $\tilde{r}_i^t = <\hat{\theta}^t, x_i^t>$ and $\hat{r}_i^t = \tilde{r}_i^t + B_i^t$ with $P(|r_i^t \tilde{r}_i^t| \leq B_i^t) = 1 \delta$.
- 3. Policy estimation: given $\hat{\mathbf{r}}^t = (\hat{r}_1^t, \dots, \hat{r}_k^t), \ \hat{\mathbf{d}}^t = (\hat{d}(x_i^t, x_j^t))_{i < j}$

$$\pi^{t}(\hat{\mathbf{r}}^{t}, \hat{\mathbf{d}}^{t}) = \underset{\pi \in \Delta[k]}{\operatorname{argmax}} \sum_{i=1}^{k} \pi_{i} \hat{r}_{i}^{t}$$

$$\operatorname{subject to} |\pi_{i} - \pi_{j}| \leq \hat{d}(x_{i}^{t}, x_{j}^{t}), \forall (i, j)$$

$$(2)$$

Estimation for d

```
\begin{split} &\pi^t = \pi(\vec{r}^t, \hat{d}^t) \\ &\text{Pull an arm } i^t \text{ according to } \pi^t \text{ and receive a reward } r^t_{i^t} \\ &S = O_d(x^t, \pi^t) \\ &R = \{(i,j) | (i,j) \not \in S \land | p^t_i - p^t_j| = \hat{d}^t_{ij} \} \\ &\text{ for } (i,j) \in S \text{ do } \\ & & \text{ DistanceEstimator}_{ij}.f \, eedback(\bot) \\ & v^t_{ij} = 1 \\ &\text{ end } \\ &\text{ for } (i,j) \in R \text{ do } \\ & & \text{ DistanceEstimator}_{ij}.f \, eedback(\top) \\ & v^t_{ij} = 1 \\ &\text{ end } \end{split}
```

Table of Contents

Metric Based

Fairness Through Awareness (2012)

Probably Approximately Metric-Fair Learning (2018)

Bandit Problem Based

Online Learning with an Unknown Fairness Metric (2018)

Counterfactual Based

Counterfactual Fairness (2017)

When Worlds Collide: Integrating Different Counterfactual Assumptions in Fairness (2017)

Multiple classifications based

Average Individual Fairness (2019

Notation

- ▶ *A* : the set of protected attributes
- ▶ X : observable attributes
- ▶ *U* : latent attributes
- Y: the outcome to be predicted
- $ightharpoonup \hat{Y}$: predictor, a random variable that depends on A, X, U

Causal Models and Counterfactuals

- Causal model is defined by (U, V, F)
- V : observable variables
- lacksquare U : set of latent background variable, which are factors not caused by V
- ▶ F is a set of functions $\{f_1, \ldots, f_n\}$ such that $V_i = f_i(pa_i, U_{pa_i})$ where $pa_i \subseteq V \setminus \{V_i\}, U_{pa_i} \subseteq U$ pa_i referes to the "parents" of V_i

Causal Models and Counterfactuals

- Intervention on variable V_i substitution of equation $V_i = f_i(pa_i, U_{pa_i})$ with the equation $V_i = v$
- Counterfactual
 - ▶ the value of Y if A had taken value a
 - ▶ solution for Y given U = u where the equations for A are replace with A = a
 - $ightharpoonup Y_{A\leftarrow a}(u)$ or Y_a

Counterfactual Fairness

▶ (Definition) Predictor Y is counterfactually fair if any context X = x and A = a

$$P(Y_{A \leftarrow a}(U) = y | X = x, A = a) = P(Y_{A \leftarrow a'}(U) = y | X = x, A = a)$$

for all y and for any value a' attainable by A

Counterfactual Fairness

▶ (Lemma) Let \mathcal{G} be the causal graph of the given model (U, V, F). Then \hat{Y} will be counterfactually fair if it is a function of the non-descendants of A is invariant with respect to the counterfactual values of A.

Algorithm

- $\hat{Y} \equiv g_{\theta}(U, X_{\not\succ A})$: predictor parameterized by θ
- ▶ $X_{\not\succ A} \subset X$: non-descendants of A
- $ightharpoonup \mathcal{D} \equiv \{(A^{(i)}, X^{(i)}, Y^{(i)}: i = 1, \dots, n\}: ext{training data}$
- ▶ $I(\cdot, \cdot)$: loss function(squared loss or log-likelihood)
 - 1: **procedure** FairLearning(\mathcal{D}, \mathcal{M})

- \triangleright Learned parameters $\hat{\theta}$
- 2: For each data point $i \in \mathcal{D}$, sample m MCMC samples $U_1^{(i)}, \dots, U_m^{(i)} \sim P_{\mathcal{M}}(U \mid x^{(i)}, a^{(i)})$.
- Let \(\mathcal{D}'\) be the augmented dataset where each point \((a^{(i)}, x^{(i)}, y^{(i)}\)) in \(\mathcal{D}\) is replaced with the corresponding m points \{(a^{(i)}, x^{(i)}, y^{(i)}, u_i^{(i)})\}.
- 4: $\hat{\theta} \leftarrow \operatorname{argmin}_{\theta} \sum_{i' \in \mathcal{D}'} l(y^{(i')}, g_{\theta}(U^{(i')}, x_{\star A}^{(i')})).$
- 5: end procedure

Table of Contents

Metric Based

Fairness Through Awareness (2012)

Probably Approximately Metric-Fair Learning (2018)

Bandit Problem Based

Online Learning with an Unknown Fairness Metric (2018)

Counterfactual Based

Counterfactual Fairness (2017)

When Worlds Collide: Integrating Different Counterfactual Assumptions in Fairness (2017)

Multiple classifications based

Average Individual Fairness (2019

Introduction

- ► The previous method requires that one provides the causal model that generated the data at hand
- ► There are infinitely many structural equations compatible with the same observable distribution.
- ▶ It is desirable to integrate competing causal models to provide counterfactually fair decisions

Definition

• $(\epsilon,0)$ -ACF (Approximate Counterfactual Fairness)

A predictor $f(\mathcal{X},A)$ satisfies $(\epsilon,0)$ -ACF if given the sensitivity attribute A=a and any instantiation x of the other observed variable \mathcal{X} , we have that

$$|f(x_{A\leftarrow a}, a) - f(x_{A\leftarrow a'}, a')| < \epsilon$$

for all $a' \neq a$

• (ϵ, δ) -ACF f satisfies (ϵ, δ) -ACF if

$$\mathbb{P}_{U}(|f(\mathcal{X}_{A\leftarrow a}, a) - f(\mathcal{X}_{A\leftarrow a'}, a')| < \epsilon | \mathcal{X} = x, A = a) > 1 - \delta$$

Algorithm

objective function :

$$\min_{f} \frac{1}{n} \sum_{i=1}^{n} I(f(x_i, a_i), y_i) + \lambda \sum_{j=1}^{m} \frac{1}{n} \sum_{i=1}^{n} \sum_{a' \neq a_i} \mu_j(f, x_i, a_i, a')$$
 (7)

where
$$\mu_j(f, x_i, a_i, a') := \mathbb{I}[|f(x_{i, A \leftarrow a_i}, a_i) - f(x_{i, A \leftarrow a'}), a')| > \epsilon]$$

surrogated version :

$$\mu_{\mathit{j}}(\mathit{f}, \mathit{x_i}, \mathit{a_i}, \mathit{a'}) := \max\{0, |\mathit{f}(\mathit{x_{i,A\leftarrow \mathit{a_i}}}, \mathit{a_i}) - \mathit{f}(\mathit{x_{i,A\leftarrow \mathit{a'}}}), \mathit{a'})| - \epsilon\}$$

Algorithm

Algorithm 1 Multi-World Fairness

- 1: **Input:** features $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_n]$, labels $\mathbf{y} = [y_1, \dots, y_n]$, sensitive attributes $\mathbf{a} = [a_1, \dots, a_n]$, privacy parameters (ϵ, δ) , trade-off parameters $\mathcal{L} = [\lambda_1, \dots, \lambda_l]$.
- 2: Fit causal models: M_1, \ldots, M_m using X, a (and possibly y).
- 3: Sample counterfactuals: $\mathcal{X}_{A^1 \leftarrow a'}, \dots, \mathcal{X}_{A^m \leftarrow a'}$ for all unobserved values a'.
- 4: for $\lambda \in \mathcal{L}$ do
- 5: Initialize classifier f_{λ} .
- 6: while loop until convergence do
- Select random batches \mathbf{X}_b of inputs and batch of counterfactuals $\mathbf{X}_{A^1\leftarrow a'},\ldots,\mathbf{X}_{A^m\leftarrow a'}$.
- Compute the gradient of equation (7).
- 9: Update f_{λ} using any stochastic gradient optimization method.
- 0: end while
- 11: end for
- 12: Select model f_{λ} : For deterministic models select the smallest λ such that equation (5) using f_{λ} holds. For non-deterministic models select the λ that corresponds to δ given f_{λ} .

Table of Contents

Metric Based

Fairness Through Awareness (2012)

Probably Approximately Metric-Fair Learning (2018)

Bandit Problem Based

Online Learning with an Unknown Fairness Metric (2018)

Counterfactual Based

Counterfactual Fairness (2017)

When Worlds Collide: Integrating Different Counterfactual Assumptions in

Multiple classifications based

Average Individual Fairness (2019)

Introduction

- In this paper, consider multiple classification tasks.
 (ex. ads for internet users, public school admissions)
- Average Individual Fairness constraints: standard statistics (such as error or FP/FN rates) should be approximately equalized across all individuals
- ▶ Here, 'rate' is defined as the average over classification tasks.
- Given a sample of individuals and classification problems, authors design an algorithm for the fair empirical risk minimization task.

Notations

- ▶ $i \in [n]$: index for a individual, $j \in [m]$: index for a classification task
- $ightharpoonup \mathcal{P}$: probability measure over \mathcal{X} , \mathcal{Q} : probability measure over the space of problems \mathcal{F}
- ▶ Dataset: $D = \left\{\mathbf{x}_i, (f_j(\mathbf{x}_i))_{j=1}^m\right\}_{i=1}^n$ where $f_j(\mathbf{x}_i) \in \{0, 1\}$ is the label corresponding to \mathbf{x}_i for the *j*th classification task.
- ▶ Denote $\mathbf{p} = (p_1, p_2, \dots, p_m)$ as learning m randomized classifieres, where p_j is the learned classifier for the jth classification task.

Definitions

Def 1. (Individual and Overall Error Rates)
The individual error rate of x incurred by p is defined as follows:

$$\mathcal{E}(\mathbf{x}, \mathbf{p}; \mathcal{Q}) = \mathbb{E}_{f \sim \mathcal{Q}} \left[\mathbb{P}_{h \sim \mathbf{p}_f} [h(\mathbf{x}) \neq f(\mathbf{x})] \right]$$

The overall error rate of \mathbf{p} is defined as follows:

$$\textit{err}(\mathbf{p}; \mathcal{P}, \mathcal{Q}) = \mathbb{E}_{\mathbf{x} \sim \mathcal{P}} \left[\mathcal{E}(\mathbf{x}, \mathbf{p}; \mathcal{Q}) \right]$$

▶ **Def 2.** (Average Individual Fairness, AIF)
We say \mathbf{p} satisfies " (α, β) -AIF" w.r.t. $(\mathcal{P}, \mathcal{Q})$ if there exists $\gamma \geq 0$ s.t.:

$$\mathbb{P}_{\mathbf{x} \sim \mathcal{P}} \left(|\mathcal{E}(\mathbf{x}, \mathbf{p}; \mathcal{Q}) - \gamma| > \alpha \right) \le \beta$$

Method

▶ Fair Learning Problem subject to $(\alpha, 0)$ -AIF

$$\min_{\mathbf{p},\gamma \in [0,1]} \ \textit{err}(\mathbf{p}; \mathcal{P}, \mathcal{Q})$$

$$\text{s.t. } \forall \mathbf{x} \in \mathcal{X}: \ |\mathcal{E}(\mathbf{x},\mathbf{p};\mathcal{Q}) - \gamma| \leq \alpha$$

Method-Empirical version

► The empirical versions of the overall error rate and the individual error rates can be expressed as:

$$\textit{err}(\mathbf{p}; \hat{\mathcal{P}}, \hat{\mathcal{Q}}) = \frac{1}{n} \sum_{i=1}^{n} \mathcal{E}(\mathbf{x}_i, \mathbf{p}; \hat{\mathcal{Q}}) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{m} \sum_{j=1}^{m} \mathbb{P}_{h_j \sim p_j}[h_j(\mathbf{x}_i) \neq f_j(\mathbf{x}_i)]$$

Empirical Fair Learning Problem

$$\begin{split} & \min_{\mathbf{p}, \gamma \in [0,1]} \ \ \textit{err}(\mathbf{p}; \hat{\mathcal{P}}, \hat{\mathcal{Q}}) \\ \text{s.t.} \ \forall \mathbf{x} \in \mathcal{X}: \ \ |\mathcal{E}(\mathbf{x}, \mathbf{p}; \hat{\mathcal{Q}}) - \gamma| \leq \underbrace{2\alpha}_{\text{slightly relaxed}} \end{split}$$