
Practical Secure Aggregation for Privacy-Preserving Machine

Learning

(Ch4∼)

이종진

Seoul National University

ga0408@snu.ac.kr

August 25, 2020

1/17

Previous

I Multiparty computation, Federated learning setting.

I Considering training neural network to predict the next word.

– Mobile devices, central server.

– Communication is extremely expensive and user dropouts are common.

– How to securely aggregate the data from mobile devices.

2/17

Crptographic Primitives

I Secret Sharing(Shamir’s t-out-of-n)

I Key Agreement(g , g a, gb, g ab)

I Authenticated Encryption

I Pseudorandom Generator(seed, [0,R)m)

I Signature Scheme (for active adversary.)

I Public Key Infrastructure.

3/17

How to aggregate the inputs

I Notation

– A single server S
– n client parties U
– A private vector for user u ∈ U , xu , dimension m, in ZR (u ∈ {1, . . . , n})

I The protocol can guarantee that the server only learns a sum of the

clients’ inputs.

4/17

Masking with One-Time Pads

I Mask xu in a particular way.

I Suppose each pair of users (u, v), u < v agree on some random vector r u,v

y u = xu +
∑

v∈U :u<v

r u,v −
∑

v∈U :u>v

r v,u (mod R)

I then,

z =
∑

y u =
∑

xu (mod R)

5/17

Masking with One-Time Pads

I Two shortcomings.

I The users must exchange the random vectors r u,v

– (Requireq quadratic communication overhead(|U| × |x |))

I No tolerance for a party failing to complete the protocol.

6/17

Efficient Communication and Handling Dropped Users.

I Reduce the communication by handling the parties agree on common
seed(su,v) for PRG rather than on the entire mask r u,v

– Seed may have comparatively low dimension

I Notify the surviving users of the drop-out, and to have them each reply
with the common seed they computed with the dropped users.

– Additional users may drop out in the recovery phase before replying with

the seed.

– Leading the number of rounds up to at most the number of users.

– They use a threshold secret sharing scheme.

7/17

Double-Masking to Protect Security

I Each user u distributes shares of su,v to each of the other users.

I Secret sharing scheme allows dropped user’s seed to be recovered

I This approach can solve the problem of unbounded recovery rounds, but
still has issue.

– If user u’s device is too slow in sending her yu to the server.

– Adversarial server in the active model can learn xu by lying about whether

user u has dropped out.

I Double masking.

8/17

Double-Masking to Protect Security

I To resolve this new security problem, they introduce doubly masking

structure.

I Each user u samples an additional random seed bu and distributes shares

of bu to each of the other users.

y u = xu +PRG(bu)+
∑

v∈U :u<v

PRG(su,v)−
∑

v∈U :u>v

PRG(sv,u) (mod R)

I Dropped user’s su,v and surviving user’s bu are needed.

9/17

Secure Aggregation Protocol

I They present a protocol which has a constant number of rounds, low

communication overhead, robustness to failures.

I The protocol consists of 4 rounds.

I They present two variants of the protocol

– Secure against honest but curious adversaries.

– Secure against active adversaries.

10/17

Secure Aggregation Protocol, Setup

I Setup

– The protocol is run between a server(S) and a set of n users.

– xu ∈ Zm
R is a input vector for user u

– The security parameter k, a threshold value t, and honestly generated

pp ← KA.gen(k)

– The server can communicate with the users with secure channels. (public

keys, encoded secret keys)

– All users u receive their signing key dSK
u from the trusted third party,

together with verification keys dPK
v bound to each user identity v

11/17

Secure Aggregation Protocol, Round 0 (AdvetiseKeys)

I User u:

– Generate key pairs(
cPKu , cSKu

)
← KA.gen(pp),

(
sPKu , sSKu

)
← KA.gen(pp),

σu ← SIG .sign
(
dSK
u , cPKu ‖sPKu

)
– Send

(
cPKu ||sPKu ||σu

)
to the server.

I Server:

– Denote users set U1 in this round

– (Assert that |U1| ≥ t)

– Broadcast to all users in U1 the list {(v , cPKv , sPKv , σv)}

12/17

Secure Aggregation Protocol, Round 1 (ShareKeys)

I User u:

– Received the list {(v , cPKv , sPKv , σv)}
Verify that ∀v ∈ U1, SIG.ver

(
dPK
v , cPKv ‖sPKv , σv

)
= 1

– Sample a random element bu ← F

– Generate t-out-of |U1| shares of sSKu and bu :{(
v , sSKu,v

)}
v∈U1

← SS.share
(
sSKu , t,U1

)
,

{(v , bu,v)}v∈U1
← SS.share (bu , t,U1)

– Encode secret keys for each other user v ∈ U1 \ {u} ,Compute

eu,v ← AE .enc(KA.agree(cSKu , cPKv), u||v ||sSKu,v ||bu,v)
– Send all the cipertexts {eu,v}v∈U2 to the server

I Server:

– Collect lists of ciphertexts from at least t users (denote U2 ⊂ U1)

– (Assert that |U2| ≥ t)

– Sent to each user u ∈ U2 all ciphertexts {eu,v}v∈U2

13/17

Secure Aggregation Protocol, Round 2 (MaskedInputCollection)

I User u:

– For each other user v ∈ U2 \ {u} compute su,v ← KA.agree(sSKu , sPKv)

– Compute pu,v

pu,v =

PRG (su,v) , when, u > v

PRG (su,v) , when, u < v

PRG (su,v) , when, u = v

– Compute pu = PRG(bu)

– Compute yu = xu + pu +
∑

v∈U2
pu,v

I Server:

– Collect yu from at least t users. (denote U3 ⊂ U2)

14/17

Secure Aggregation Protocol, Round 3 (ConsistencyCheck)

I User u:

– Send to the server σ
′
u ← SIG .sign(dSK

u ,U3)

I Server:

– Collect σ
′
u from at least t users (denote U4 ⊂ U3) ,

Send to each user in U4 the set {v , σ′
v}v∈U4

15/17

Secure Aggregation Protocol, Round 4 (Unmasking)

I User u:

– SIG .ver(dPK ,U3, σ
′
v) = 1 for all v ∈ U4

– Assert that u = u
′
and v = v

′

– Descrypt the ciphertext

v
′ ||u′ ||sSKu,v ||bv,u ← AE .dec(KA.agree(cPKu , cPKv), ev,u)

– Send a list of shares to the server, which consists of sSKu,v for users

v ∈ U2 \ U3 and bv,u for users in v ∈ U3

I Server:

– Collect responses from at least t users (denote with U5 this set of users).

– For u ∈ U2 \ U3, reconstruct sv,u ← SS.recon({sSKu,v}v∈U5 , t) for all v ∈ U3.

– Compute pv,u for all v ∈ U2 \ U3.

– For u ∈ U3, reconstruct bu ← SS.recon({bu,v v∈U5 , t)} and then recompute

pu using the PRG.

– Compute and output z =
∑

u∈U3
xu as∑

u∈U3
xu =

∑
u∈U3

yu −
∑

u∈U3
pu +

∑
u∈U3,v∈U2\U3

pv,u

16/17

The end.

17/17

	Previous
	Ch4.Technical Intuition.
	Ch5. A Practical Secure Aggregation Protocol

