Practical Secure Aggregation for Privacy-Preserving Machine

Learning

(Cha~)

0|22l

—

Seoul National University

ga0408@snu.ac.kr

August 25, 2020

1/17

Previous

» Multiparty computation, Federated learning setting.
» Considering training neural network to predict the next word.

— Mobile devices, central server.
— Communication is extremely expensive and user dropouts are common.

— How to securely aggregate the data from mobile devices.

2/17

Crptographic Primitives

> Secret Sharing(Shamir's t-out-of-n)

> Key Agreement(g, g%, g%, &%)

» Authenticated Encryption

» Pseudorandom Generator(seed, [0, R)™)
» Signature Scheme (for active adversary.)

» Public Key Infrastructure.

3/17

How to aggregate the inputs

» Notation

— A single server S
— n client parties U

— A private vector for user u € U, xy, dimension m, in Zg (u € {1,...,n})

» The protocol can guarantee that the server only learns a sum of the

clients’ inputs.

4/17

Masking with One-Time Pads

» Mask x, in a particular way.

» Suppose each pair of users (v, v), u < v agree on some random vector ry

yu:XU+ Z ru,v_ Z rv,u (mod R)

vel:u<v veU:u>v

» then,

Z:Zyu:qu (mod R)

5/17

Masking with One-Time Pads

» Two shortcomings.
» The users must exchange the random vectors r,

— (Requireq quadratic communication overhead(|U/| X |x|))

» No tolerance for a party failing to complete the protocol.

6/17

Efficient Communication and Handling Dropped Users.

» Reduce the communication by handling the parties agree on common
seed(s,,v) for PRG rather than on the entire mask r,,,
— Seed may have comparatively low dimension
» Notify the surviving users of the drop-out, and to have them each reply
with the common seed they computed with the dropped users.
— Additional users may drop out in the recovery phase before replying with
the seed.
— Leading the number of rounds up to at most the number of users.

— They use a threshold secret sharing scheme.

7/17

Double-Masking to Protect Security

» Each user u distributes shares of s,,, to each of the other users.

» Secret sharing scheme allows dropped user’s seed to be recovered

» This approach can solve the problem of unbounded recovery rounds, but
still has issue.

— If user u's device is too slow in sending her y,, to the server.
— Adversarial server in the active model can learn x, by lying about whether

user u has dropped out.

» Double masking.

8/17

Double-Masking to Protect Security

» To resolve this new security problem, they introduce doubly masking

structure.
» Each user u samples an additional random seed b, and distributes shares

of b, to each of the other users.

Yu=Xu+PRG(b,)+ > PRG(s,,)— > PRG(s..) (modR)

vel:u<v velu:u>v

» Dropped user's s, and surviving user's b, are needed.

9/17

Secure Aggregation Protocol

» They present a protocol which has a constant number of rounds, low

communication overhead, robustness to failures.

» The protocol consists of 4 rounds.
» They present two variants of the protocol

— Secure against honest but curious adversaries.

— Secure against active adversaries.

10/17

Secure Aggregation Protocol, Setup

»> Setup

The protocol is run between a server(S) and a set of n users.

xuy € ZF is a input vector for user u

The security parameter k, a threshold value t, and honestly generated
pp + KA.gen(k)

The server can communicate with the users with secure channels. (public
keys, encoded secret keys)

All users u receive their signing key dUSK from the trusted third party,

together with verification keys d‘f’K bound to each user identity v

11/17

Secure Aggregation Protocol, Round 0 (AdvetiseKeys)

» User u:
— Generate key pairs
(¥, ci¥) « KA.gen(pp), (si¥,s3") < KA.gen(pp),
ou < SIG.sign (d3K, cPX||sPK)

— Send (cF¥||sP¥||ou) to the server.

» Server:

— Denote users set U in this round
— (Assert that |Uy| > t)

— Broadcast to all users in Uy the list {(v, cf¥,sPK, 0,)}

12/17

Secure Aggregation Protocol, Round 1 (ShareKeys)

»> User u:
— Received the list {(v,c/X,sP% 0,)}
Verify that Vv € Uy, SIG.ver (dPF, cPK||sPK 0,) =1

— Sample a random element b, + F

— Generate t-out-of |Uy| shares of s3K and b,:

{(v,sﬁff,)}veu < SS.share (s3K, t,Uy),

{(v, buv)}, ey, < SS-share (by,t,Us)
— Encode secret keys for each other user v € Uz \ {u} ,Compute
575, ullvls3lbuv)

— Send all the cipertexts {ey,v}vcus, to the server

eu,v < AE.enc(KA.agree(c;

> Server:

— Collect lists of ciphertexts from at least t users (denote U C Uz)
— (Assert that |Ua| > t)

— Sent to each user u € Uz all ciphertexts {ey,v }veu,

13/17

Secure Aggregation Protocol, Round 2 (MaskedInputCollection)

»> User u:
— For each other user v € Us \ {u} compute s,,, + KA.agree(s3X,sFK)
— Compute Puv
PRG (sy,v), when, u>v
Py, = 4§ PRG (suv), when, u<v
PRG (su,v), when, u=v
— Compute p, = PRG(by)
— Compute y, = xu + Py + 2y csy Puv
> Server:

— Collect y, from at least t users. (denote Uz C U>)

14/17

Secure Aggregation Protocol, Round 3 (ConsistencyCheck)

» User u:

— Send to the server a,/_, +— SIG.sign(d3X,U3)

> Server:

’
— Collect o, from at least t users (denote Uy C U3) ,

. ’
Send to each user in Uy the set {v,0,}vcu,

15/17

Secure Aggregation Protocol, Round 4 (Unmasking)

> User u:

SIG.ver(dPK,Us,0,) =1 for all v € Uy

— Assert that u = and v = v/

— Descrypt the ciphertext
V' |[d||sEK||by,u < AE.dec(KA.agree(cPX, cPX), ey u)
— Send a list of shares to the server, which consists of sf’f/ for users
v € U \ Uz and by, for usersin v € Uz
> Server:
— Collect responses from at least t users (denote with Us this set of users).

— For u € Uz \ Us, reconstruct s,,, < SS.recon({s;%},cys, t) for all v € Us.

Compute p, , for all v € U \ Us.
— For u € Uz, reconstruct b, <— SS.recon({bu,vvcus,t)} and then recompute
p, using the PRG.

— Compute and output z = 3", ;. Xu as

ZUEM;; Xu = Zueug Yu— ZU€U3 p,t+ Zueu3,ve(/12\u3 Pv.u

16/17

The end.

17/17

	Previous
	Ch4.Technical Intuition.
	Ch5. A Practical Secure Aggregation Protocol

