
Unconstrained convex optimization

through first-order approximation methods

Sang Jun Moon

August 29, 2020

Statistics, University of Seoul



Contents

• Introduction

• Representative algorithms and its convergence properties

• Gradient descent

• Stochastic gradient descent

• Subgradient method

• Proximal gradient method

• Summary

1



Introduction
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Convex optimization problem

• An convex optimization problem is one of the form

min
x

f (x)

subject to x ∈ X

where x ∈ Rp, f : Rp 7→ R is convex function, and X ⊆ Rp is

convex set.

• We call f the objective function, X the feasible set, and x ∈ X the

constraint.

• An optimal value p∗ is defined as

p∗ = inf{f (x) : x ∈ X}.

• In addition, if x∗ ∈ X and f (x∗) = p∗, then x∗ is called optimal.
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Unconstrained convex optimization problem

• If there are no constraints, we say the problem (1) is unconstrained

convex optimization problem:

min
x

f (x)

• In this presentation, we will deal with the algorithms for solving

unconstrained convex optimization problem.

• Among various algorithms, the algorithms based on the first-order

approximation method and its convergence properties are explained.
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Representative algorithms
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• The algorithms will be introduced can be written as

x (k+1) = x (k) + ηk∆x (k) (1)

in common where ηk > 0 is called a step size or learning rate and

∆x (k) is called a direction.

• The algorithm varies depending on the type of direction.

• The convergence properties of each algorithm can be seen when an

appropriate step size.

• The following two types are considered in the selection of step size:

• Fixed constant step size: ηk = η

• Diminishing step size: ηk satisfying

∞∑
k=1

η2k <∞,
∞∑
k=1

ηk =∞
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Objective function f

To prove convergence property, it is assumed that the objective function

f should satisfy one or more of the following conditions:

• Lipschitz continuous gradient.

• Strong convexity.

• Lipschitz continuous.
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Lipschitz continuous gradient condition (A1)

• A differentiable function f is L-Lipschitz continuous gradient iff

‖∇f (x)−∇f (y)‖2 ≤ L‖x − y‖2 for all x , y (2)

for some L > 0 where

∇f (x) =
(∂f (x)

∂x1
,
∂f (x)

∂x2
, · · · , ∂f (x)

∂xp

)T
.

• The L-Lipschitz continuous gradient condition guarantees that

f (y) ≤ f (x) +∇f (x)>(y − x) +
L

2
‖y − x‖22. (3)
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Strong convexity condition (A2)

• A differentiable f is S-strongly convex iff

f (y) ≥ f (x) +∇f (x)>(y − x) +
S

2
‖y − x‖22 (4)

• If f is S-strongly convex, then

‖∇f (x)‖22 ≥ 2S(f (x)− f (x∗)) (5)
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Lipschitz continuous condition (A3)

• A function f is C -Lipschitz continuous iff

|f (x)− f (y)| ≤ C‖x − y‖2 for all x , y (6)

for some s > 0.

• If f is differentiable and C -Lipschitz continuous, then

‖∇f (x)‖2 ≤ C for all x
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Gradient descent method (GD)
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Descent methods

• The descent methods satisfy

f (x (k+1)) < f (x (k)) (7)

for x (k) 6= x∗ with x (k+1) = x (k) + ηk∆x (k).

• From convexity, we know that

f (x (k+1))− f (x (k)) ≥ ∇f (x (k))T (x (k+1) − x (k)) (8)

= ηk∇f (x (k))>∆x (k) (9)

• Since ∇f (x (k))T∆x (k) ≥ 0 implies f (x (k+1)) ≥ f (x (k)),

∇f (x (k))T∆x (k) < 0 (10)

is necessary condition for descent methods.
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Gradient descent method

• The negative gradient, −∇f (x (k)), is the most easily conceived

direction for descent methods.

• This is because, for an arbitrary unit descent direction v , the change

of f (x (k)) is given by

∂

∂ηk
f (x (k) + ηkv)

∣∣∣∣
ηk=0

= ∇f (x (k))>v .

which implies that the direction of steepest descent is

v = −∇f (x (k))/‖∇f (x (k))‖2.
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• Thus, the update rule of GD,

x (k+1) = x (k) − ηk∇f (x (k)),

intuitively makes sense.

• From now on, we will show the convergence properties which is

defined as the upper bound of f (x (K))− p∗ where K is the number

of iterations.
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Theorem 1

Under (A1) and fixed step size 0 < η < 1/L, the following property holds

f (x (K+1))− p∗ ≤ ‖x
(1) − x∗‖22

2ηK
.

• We need O(1/ε) iterations to get f (x (K))− p∗ ≤ ε.
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• For simplicity, denote update rule as x+ = x − η∇f (x).

• From the assumption (A1), (3) holds as follows:

f (x+) ≤ f (x) +∇f (x)T (x+ − x) +
L

2
‖x+ − x‖22 (11)

= f (x)− η
(

1− Lη

2

)
‖∇f (x)‖22 (12)

• The range of step size makes upper bound on

− η
(

1− Lη

2

)
‖∇f (x)‖22 < −

η

2
‖∇f (x)‖22 (13)

which implies that the algorithm is a descent method.
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• Thus, we can obtain that

f (x+) ≤ f (x)− η

2
‖∇f (x)‖22 (14)

≤ f (x∗) +∇f (x)T (x − x∗)− η

2
‖∇f (x)‖22 (15)

= f (x∗) +
1

2η
(‖x − x∗‖22 − ‖x+ − x∗‖22). (16)

where the second inequality is due to convexity of f .

• By summing both sides of (14) from k = 1 to K , it follows that

K∑
k=1

(
f (x (k+1))− f (x∗)

)
≤ 1

2η
(‖x (1) − x∗‖22 − ‖x (K+1) − x∗‖22)

≤ 1

2η
‖x (1) − x∗‖22.
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• Since it is a decent method,

K (f (x (K+1))− f (x∗)) ≤
K∑

k=1

(
f (x (k))− f (x∗)

)
holds. Therefore,

f (x (K+1))− f (x∗) ≤ ‖x
(1) − x∗‖22

2ηK
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Theorem 2

Under (A1), (A2), and fixed step size 0 < η < 1
L+S ,

f (x (K+1))− p∗ ≤ (1− ηS)K (f (x (1))− p∗)

• We need O(log(1/ε)) iterations to get f (x (K))− p∗ ≤ ε.
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• For simplicity, we denote update rule by x+ = x − η∇f (x).

• As in Theorem 1, −η + η2L
2 < −η2 holds because the step size η is

always smaller than 1/L.

• Thus, by (A2), we can get

f (x+) ≤ f (x)− η

2
‖∇f (x)‖22 (17)

≤ f (x)− ηS(f (x)− p∗). (18)

• By subtracting p∗ from both side, it is obtained that

f (x+)− p∗ ≤ (1− ηS) (f (x)− p∗). (19)

Therefore,

f (x (K+1))− p∗ ≤ (1− ηS)K (f (x (1))− p∗) (20)
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Stochastic gradient descent method (SGD)
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Stochastic gradient

• Often, it is hard to apply the GD to some cases.

• Suppose that the objective function can be decomposed as

f (x) =
n∑

i=1

fi (x).

• The following are simple cases where it is difficult to apply GD.

• Case 1: n is very large such that computing ∇f (x) is intractable.

• Case 2: f (x) is not fixed since fi is observed on-line.
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• A stochastic gradient is the gradient calculated by some of fi (x).

• Let ξ = (ξ1, · · · , ξn)T ∈ Rn where ξi ∈ {0, 1} for i = 1, · · · , n be

random sampled value.

• The stochastic gradient, g(x , ξ), is defined as

g(x , ξ) =
n∑

i=1

ξi∇fi (x) (21)

• The update rule of SGD is

x (k+1) = x (k) − ηkg(x (k), ξ(k)) (22)

in which ξ(k) is randomly sampled at each k-th iteration.
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Additional assumptions for SGD

• There exist µG ≥ µ ≥ 0 such that, for all k ∈ N,

∇f (x (k))TEξ(k)(g(x (k), ξ(k))) ≥ µ‖∇f (x (k))‖22 (23)

‖Eξ(k)(g(x (k), ξ(k)))‖2 ≤ µG‖∇f (x (k))‖2

• There exists M,MV ≥ 0 such that

Eξ(k)(‖g(x (k), ξ(k))‖22) ≤ M + (MV + µ2
G )‖∇f (x (k))‖22. (24)

Here, we let MG = MV + µ2
G .
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Lemma 1

Under (A1), (A2), (23), and (24), the following holds

E(f (x (k+1))− p∗) ≤ (1− ηkµS)E(f (x (k))− p∗) +
L

2
η2kM (25)

for 0 < ηk < µ/LMG .

• For ease of notation, we denote update rule as x+ = x − ηg(x , ξ).

• From Assumption (A1), it follows that

f (x+) ≤ f (x) +∇f (x)T (x+ − x) +
L

2
‖x+ − x‖22

= f (x)− η∇f (x)Tg(x , ξ) +
L

2
η2‖g(x , ξ)‖22
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• Taking expectations with respect to ξ, we can obtain

Eξ(f (x+)− f (x)) ≤ −η∇f (x)TEξ(g(x , ξ)) +
L

2
η2Eξ(‖g(x , ξ)‖22)

≤ −ηµ‖∇f (x)‖22 +
L

2
η2(M + MG‖∇f (x)‖22)

= −η
(
µ− L

2
ηMG

)
‖∇f (x)‖22 +

L

2
η2M.

by Assumption (23) and (24).

• We can take expectation and apply same technique in Theorem 2 as

follows:

E(f (x+)− p∗) ≤ (1− ηµS)E(f (x)− p∗) +
L

2
η2M,

since if f is S-strongly convex, then ‖∇f (x)‖22 ≥ 2S(f (x)− f (x∗)),

and 0 < η < µ/LMG .
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Theorem 3

Under (A1), (A2), (23), and (24), for fixed step size satisfying

0 < η < µ
LMG

, the following inequality holds:

E(f (x (K+1))− p∗)− LηM

2µS
≤ (1− ηµS)K

(
f (x (1))− p∗ − LηM

2µS

)
which implies that

lim
k→∞

E(f (x (k))− p∗) ≤ LηM

2µS
.
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• From Lemma 1, we can obtain

E(f (x (k+1))− p∗) ≤ (1− ηµS)E(f (x (k))− p∗) +
L

2
η2M.

• Let t = LηM
2µS , then

E(f (x (k+1))− p∗)− t ≤ (1− ηµS)(E(f (x (k))− p∗)− t)

hold. Therefore, the following holds:

E(f (x (K+1))− p∗)− t ≤ (1− ηµS)K (f (x (1))− p∗ − t).

• Also, since L ≥ S ,MG = µ2
G + MV ≥ µ2,

0 < ηµS <
µ2S

LMG
≤ 1.
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Theorem 4

Under (A1), (A2), (23), (24), and for decreasing step size ηk = β
γ+k for

some β > 1
µS and γ > 0 such that η1 ≤ µ

LMG
, expected optimality gap

satisfies the following inequality.

E(f (x (K))− p∗) ≤ ν

γ + K
(26)

where

ν = max

{
β2LM

2(βµS − 1)
, (γ + 1)(f (x (1))− p∗)

}
(27)
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• Since the step size is decreases as

ηk ≤ η1 ≤
µ

LMG
,

we can obtain

E(f (x (k+1))− p∗) ≤ (1− ηkµS)E(f (x (k))− p∗) +
L

2
η2kM,

from Lemma 1.

• Then, Theorem can be shown by induction.

• It is obvious that Theorem holds when k = 1.
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• Assume that it holds for some k > 1 which is

E(f (x (k))− p∗) ≤ v

k̂
where k̂ = γ + k, (28)

then since ηk = β/k̂,

E(f (x (k+1))− p∗) ≤ (1− ηkµS)E(f (x (k))− p∗) +
L

2
η2kM

≤
(

1− βµS

k̂

)
ν

k̂
+
β2LM

2k̂2
(29)

=

(
1

k̂
− 1

k̂2

)
ν − (βµs − 1)ν

k̂2
+
β2cM

2k̂2

holds.
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• From the definition of ν, ν ≥ β2LM
2(βµS−1) holds which implies that

(βµS − 1)ν

k̂2
≥ β2LM

2k̂2

• Therefore, it holds for k + 1 as follows:

E(f (x (k+1))− p∗) ≤
(

1

k̂
− 1

k̂2

)
ν − (βµS − 1)ν

k̂2
+
β2LM

2k̂2

≤

(
k̂ − 1

k̂2

)
ν ≤ 1

k̂ + 1
ν.
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Subgradient method (SM)
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• The above two algorithms are used when the objective function

could be differentiated.

• The subgradient method (SM) is an algorithm that can be used

when the objective function cannot be differentiated.
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• A vector g ∈ Rn is subgradient at x iff

f (y) ≥ f (x) + g>(y − x), for all y . (30)

• The set of all subgradient of f at x is called the subdifferential

∂f (x) = {g ∈ Rn : f (y) ≥ f (x) + gT (y − x)}. (31)

• For convex function f ,

f (x∗) = min
x

f (x) ⇐⇒ 0 ∈ ∂f (x∗) (32)

which is called subgradient optimality condition.
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• The update rule of SM is that

x (k+1) = x (k) − ηkg (k),

where g (k) ∈ ∂f (x (k)).

• The main difference between SM and GD is that the subgradient

method saves the updated solutions, x (k), and selects the solution

that makes the objective function the smallest among them as

follows:

x̂ (K) = argmin
k=1,··· ,K

f (x (k)),

because it is not one of descent method.
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Lemma 2

Under (A3), the following holds:

f (x̂ (K))− p∗ ≤
R2 + C 2

∑K
k=1 η

2
k

2
∑K

k=1 ηk
(33)

where R = ‖x (1) − x∗‖2 and ηk > 0 is an arbitrary step size.
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• From the definition of subgradient, we set y = x + g as

f (x + g) ≥ f (x) + g>(x + g − x) = f (x) + ‖g‖22

which implies that

‖g‖22 ≤ |f (x + g)− f (x)| ≤ C‖g‖2 ⇒ ‖g‖2 ≤ C

under (A3).
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• For simplification, the update rule is denoted by x+ = x − ηg .

• Thus, it follows that

‖x+ − x∗‖22 = ‖x − x∗‖22 − 2ηgT (x − x∗) + η2‖g‖22
≤ ‖x − x∗‖22 − 2η(f (x)− f (x∗)) + η2C 2

in which the second inequality holds from the definition of

subgradient.
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• By summing both sides for k = 1 to K ,

‖x (K+1) − x∗‖22

≤ ‖x (1) − x∗‖22 − 2
K∑

k=1

ηk(f (x (k))− p∗) + C 2
K∑

k=1

η2k (34)

• Since ‖x (K+1) − x∗‖22 ≥ 0 and R = ‖x (1) − x∗‖2,

2
K∑

k=1

ηk(f (x (k))− p∗) ≤ R2 + C 2
K∑

k=1

η2k (35)

holds.
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• In addition,

2(f (x̂ (K))− p∗)
K∑

k=1

ηk ≤ 2
K∑

k=1

ηk(f (x (k))− p∗) (36)

holds because f (x̂ (K)) = mink=1,··· ,K f (x (k)).

• Therefore,

f (x̂ (K))− p∗ ≤
R2 + C 2

∑K
k=1 η

2
k

2
∑K

k=1 ηk
(37)
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Theorem 5

Under (A3) and for fixed step size η,

f (x̂ (K))− p∗ ≤ R2

2Kη
+
ηC 2

2
(38)

where R = ‖x (1) − x∗‖22 which implies that

lim
k→∞

f (x̂ (k)) ≤ p∗ +
ηC 2

2
.

• For making right hand side of above inequality less than ε, we can

choose

η =
ε

C 2
, K =

R2

ηε
=

C 2R2

ε2
.

• That is, we need O(1/ε2) iterations to get f (x̂ (K))− p∗ ≤ ε.
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Theorem 6

Under (A3) and diminishing step size ηk ,

f (x̂ (K))− p∗ ≤ O

(
1∑K

k=1 ηk

)

holds which implies that

lim
k→∞

f (x̂ (k)) = p∗
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Proximal gradient method (PG)
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• Like the SM, the proximal gradient method (PG) is a method that

can be used when the objective function cannot be differentiated,

but unlike the SM, suppose that f can be decomposed into

f (x) = g(x) + h(x)

where g is convex and differentiable and h is convex but

non-differentiable.

• The motivation for PG is to approximate the differentiable function

g at x = x (k) as follows:

g(z) ≈ g(x (k)) +∇g(x (k))T (z − x (k)) +
1

2ηk
‖z − x (k)‖22 := g̃(z)
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• The update rule of PG is as follows:

x (k+1) = argmin
z

g̃(z) + h(z)

= argmin
z

g(x (k)) +∇g(x (k))T (z − x (k)) +
1

2ηk
‖z − x (k)‖22

+h(z)

= argmin
z

1

2ηk
‖z − (x (k) − ηk∇g(x (k)))‖22 + h(z) (39)

• Here, the proximal mapping is defined as

proxh,ηk (y) = argmin
z

1

2ηk
‖z − y‖22 + h(z) (40)
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• Thus, the update rule of PG can be expressed as follows.

x (k+1) = proxh,ηk (x (k) − ηk∇g(x (k)))

= x (k) − ηkGηk (x (k))

where

Gηk (x) =
x (k) − proxh,ηk (x (k) − η∇g(x (k)))

ηk

• The strength of PG is that the proximal mapping depends only on h

not g and can be computed analytically for some h.
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Example of proximal gradient descent method: ISTA

• Consider the objective function of Lasso regression

f (β) =
1

2
‖y − Xβ‖22︸ ︷︷ ︸

g(β)

+λ‖β‖1︸ ︷︷ ︸
h(β)

(41)

for given y ∈ Rn and X ∈ Rn×p.

• The proximal mapping is

proxh,η(β) = argmin
z

A(z) (42)

where A(z) = 1
2η‖β − z‖22 + λ‖z‖1.
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• By subgradient optimal condition (32), z∗ is optimal if

0 ∈ ∂A(z∗) =
1

η
(z∗ − β) + λ∂‖z∗‖1 (43)

• For some v ∈ ∂‖z∗‖1,

−1

η
(z∗ − β) = λv (44)

• Choose z∗ such that

[z∗]i = [Sλη(β)]i =


βi − λη if βi > λη

0 if− λη ≤ βi ≤ λη
βi + λη if βi < −λη

(45)

which satisfying subgradient optimal condition.
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• Therefore, proximal mapping is

proxh,η(β) = argmin
z

1

2η
‖β − z‖22 + λ‖z‖1

= Sλη(β)

• Since ∇g(β) = −XT (y − Xβ), update rule is

β+ = proxh,η(β − η∇g(β)) (46)

= Sλη(β + ηXT (y − Xβ)) (47)

which is called iterative soft-thresholding algorithm (ISTA).
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Lemma 3

Gη(x)−∇g(x) ∈ ∂h(x+) where x+ = x − ηGη(x)

• By definition of proximal mapping and subgradient optimality,

u = argmin
z

1

2η
‖z − x‖22 + h(z) ⇐⇒ 0 ∈ 1

η
(u − x) + ∂h(u) (48)

holds. In our case, since

x+ = argmin
z

1

2η
‖z − (x − η∇g(x))‖22 + h(z), (49)

Lemma holds as follows:

Gη(x)−∇g(x) ∈ ∂h(x+) (50)
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Lemma 4

Assume that g is L-Lipschitz continuous gradient as (A3) and for fixed

0 < η < 1/L,

f (x+) ≤ f (z) + Gη(x)T (x − z)− η

2
‖Gη(x)‖22

holds for all z where x+ = x − ηGη(x).
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• By L-Lipschitz condition on g ,

f (x+) = g(x+) + h(x+) (51)

≤ g(x)− η∇g(x)>Gη(x) +
η2L

2
‖Gη(x)‖22︸ ︷︷ ︸

T1

+ h(x+)︸ ︷︷ ︸
T2

(52)

holds. Since g is convex and η ≤ 1/L,

T1 ≤ g(z) +∇g(x)T (x − z)− η∇g(x)TGη(x) +
η

2
‖Gη(x)‖22

holds. In addition, from Lemma 3,

T2 ≤ h(z) + (Gη(x)−∇g(x))T (x+ − z) (53)

holds. Therefore,

T1 + T2 ≤ f (z) + Gη(x)T (x − z)− η

2
‖Gη(x)‖22 (54)
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Theorem 7

Assume that g is L-Lipschitz continuous gradient and for fixed step size

0 < η < 1/L,

f (x (K+1))− p∗ ≤ ‖x
(1) − x∗‖22

2ηK

holds.

• We need O(1/ε) iterations to make f (x (K+1))− p∗ ≤ ε.
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• For ease of notation, we denote the update rule by x+ = x − Gη(x).

• Remark: (Lemma 4)

f (x+) ≤ f (z) + Gη(x)T (x − z)− η

2
‖Gη(x)‖22

• Since Lemma 4 is satisfied for all z , we can get

f (x+) ≤ f (x)− η

2
‖Gη(x)‖22

by substituting z = x which implies that it is descent method.
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• Substituting z = x∗ into Lemma 4 makes

f (x+)− p∗ ≤ Gη(x)T (x − x∗)− η

2
‖Gη(x)‖22 (55)

=
1

2η
(‖x − x∗‖22 − ‖x+ − x∗‖22) (56)

• By summing both sides of inequality for k = 1 to K , it follows that

K∑
k=1

(f (x (k+1))− p∗) ≤ 1

2η
(‖x (1) − x∗‖22 − ‖x (K+1) − x∗‖22)

≤ 1

2η
‖x (1) − x∗‖22.

Therefore, we can obtain

K (f (x (K+1))− p∗) ≤ 1

2η
‖x (1) − x∗‖22.
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Summary
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Summary

A1 (A1, A2) A3

GD c1/K cK2 ·
SGD · cK3 + c4;f, c5/(c6 + K ) ;d ·
SM · · c7/K + c8
PG c9/K · ·

Table 1: Convergence properties of each algorithms with respect to

assumptions and step size; K is the number of iterations; ci is some positive

constant for i = 1, · · · , 9; ‘;f’ denotes fixed step size and ‘;d’ denotes

diminishing step size;
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