Unconstrained convex optimization through first-order approximation methods

Sang Jun Moon

August 29, 2020

Statistics, University of Seoul

Contents

- Introduction
- Representative algorithms and its convergence properties
- Gradient descent
- Stochastic gradient descent
- Subgradient method
- Proximal gradient method
- Summary

Introduction

Convex optimization problem

- An convex optimization problem is one of the form

$\min _{x}$	$f(x)$
subject to	$x \in \mathcal{X}$

where $x \in \mathbb{R}^{p}, f: \mathbb{R}^{p} \mapsto \mathbb{R}$ is convex function, and $\mathcal{X} \subseteq \mathbb{R}^{p}$ is convex set.

- We call f the objective function, \mathcal{X} the feasible set, and $x \in \mathcal{X}$ the constraint.
- An optimal value p^{*} is defined as

$$
p^{*}=\inf \{f(x): x \in \mathcal{X}\} .
$$

- In addition, if $x^{*} \in \mathcal{X}$ and $f\left(x^{*}\right)=p^{*}$, then x^{*} is called optimal.

Unconstrained convex optimization problem

- If there are no constraints, we say the problem (1) is unconstrained convex optimization problem:

$$
\min _{x} f(x)
$$

- In this presentation, we will deal with the algorithms for solving unconstrained convex optimization problem.
- Among various algorithms, the algorithms based on the first-order approximation method and its convergence properties are explained.

Representative algorithms

- The algorithms will be introduced can be written as

$$
\begin{equation*}
x^{(k+1)}=x^{(k)}+\eta_{k} \Delta x^{(k)} \tag{1}
\end{equation*}
$$

in common where $\eta_{k}>0$ is called a step size or learning rate and $\Delta x^{(k)}$ is called a direction.

- The algorithm varies depending on the type of direction.
- The convergence properties of each algorithm can be seen when an appropriate step size.
- The following two types are considered in the selection of step size:
- Fixed constant step size: $\eta_{k}=\eta$
- Diminishing step size: η_{k} satisfying

$$
\sum_{k=1}^{\infty} \eta_{k}^{2}<\infty, \quad \sum_{k=1}^{\infty} \eta_{k}=\infty
$$

Objective function f

To prove convergence property, it is assumed that the objective function f should satisfy one or more of the following conditions:

- Lipschitz continuous gradient.
- Strong convexity.
- Lipschitz continuous.

Lipschitz continuous gradient condition (A1)

- A differentiable function f is L-Lipschitz continuous gradient iff

$$
\begin{equation*}
\|\nabla f(x)-\nabla f(y)\|_{2} \leq L\|x-y\|_{2} \quad \text { for all } x, y \tag{2}
\end{equation*}
$$

for some $L>0$ where

$$
\nabla f(x)=\left(\frac{\partial f(x)}{\partial x_{1}}, \frac{\partial f(x)}{\partial x_{2}}, \cdots, \frac{\partial f(x)}{\partial x_{p}}\right)^{T} .
$$

- The L-Lipschitz continuous gradient condition guarantees that

$$
\begin{equation*}
f(y) \leq f(x)+\nabla f(x)^{\top}(y-x)+\frac{L}{2}\|y-x\|_{2}^{2} . \tag{3}
\end{equation*}
$$

Strong convexity condition (A2)

- A differentiable f is S-strongly convex iff

$$
\begin{equation*}
f(y) \geq f(x)+\nabla f(x)^{\top}(y-x)+\frac{S}{2}\|y-x\|_{2}^{2} \tag{4}
\end{equation*}
$$

- If f is S-strongly convex, then

$$
\begin{equation*}
\|\nabla f(x)\|_{2}^{2} \geq 2 S\left(f(x)-f\left(x^{*}\right)\right) \tag{5}
\end{equation*}
$$

Lipschitz continuous condition (A3)

- A function f is C-Lipschitz continuous iff

$$
\begin{equation*}
|f(x)-f(y)| \leq C\|x-y\|_{2} \quad \text { for all } x, y \tag{6}
\end{equation*}
$$

for some $s>0$.

- If f is differentiable and C-Lipschitz continuous, then

$$
\|\nabla f(x)\|_{2} \leq C \quad \text { for all } x
$$

Gradient descent method (GD)

Descent methods

- The descent methods satisfy

$$
\begin{equation*}
f\left(x^{(k+1)}\right)<f\left(x^{(k)}\right) \tag{7}
\end{equation*}
$$

for $x^{(k)} \neq x^{*}$ with $x^{(k+1)}=x^{(k)}+\eta_{k} \Delta x^{(k)}$.

- From convexity, we know that

$$
\begin{align*}
f\left(x^{(k+1)}\right)-f\left(x^{(k)}\right) & \geq \nabla f\left(x^{(k)}\right)^{\top}\left(x^{(k+1)}-x^{(k)}\right) \tag{8}\\
& =\eta_{k} \nabla f\left(x^{(k)}\right)^{\top} \Delta x^{(k)} \tag{9}
\end{align*}
$$

- Since $\nabla f\left(x^{(k)}\right)^{T} \Delta x^{(k)} \geq 0$ implies $f\left(x^{(k+1)}\right) \geq f\left(x^{(k)}\right)$,

$$
\begin{equation*}
\nabla f\left(x^{(k)}\right)^{T} \Delta x^{(k)}<0 \tag{10}
\end{equation*}
$$

is necessary condition for descent methods.

Gradient descent method

- The negative gradient, $-\nabla f\left(x^{(k)}\right)$, is the most easily conceived direction for descent methods.
- This is because, for an arbitrary unit descent direction v, the change of $f\left(x^{(k)}\right)$ is given by

$$
\left.\frac{\partial}{\partial \eta_{k}} f\left(x^{(k)}+\eta_{k} v\right)\right|_{\eta_{k}=0}=\nabla f\left(x^{(k)}\right)^{\top} v
$$

which implies that the direction of steepest descent is

$$
v=-\nabla f\left(x^{(k)}\right) /\left\|\nabla f\left(x^{(k)}\right)\right\|_{2} .
$$

- Thus, the update rule of GD,

$$
x^{(k+1)}=x^{(k)}-\eta_{k} \nabla f\left(x^{(k)}\right),
$$

intuitively makes sense.

- From now on, we will show the convergence properties which is defined as the upper bound of $f\left(x^{(K)}\right)-p^{*}$ where K is the number of iterations.

Theorem 1

Under (A1) and fixed step size $0<\eta<1 / L$, the following property holds

$$
f\left(x^{(K+1)}\right)-p^{*} \leq \frac{\left\|x^{(1)}-x^{*}\right\|_{2}^{2}}{2 \eta K} .
$$

- We need $O(1 / \epsilon)$ iterations to get $f\left(x^{(K)}\right)-p^{*} \leq \epsilon$.
- For simplicity, denote update rule as $x^{+}=x-\eta \nabla f(x)$.
- From the assumption (A1), (3) holds as follows:

$$
\begin{align*}
f\left(x^{+}\right) & \leq f(x)+\nabla f(x)^{T}\left(x^{+}-x\right)+\frac{L}{2}\left\|x^{+}-x\right\|_{2}^{2} \tag{11}\\
& =f(x)-\eta\left(1-\frac{L \eta}{2}\right)\|\nabla f(x)\|_{2}^{2} \tag{12}
\end{align*}
$$

- The range of step size makes upper bound on

$$
\begin{equation*}
-\eta\left(1-\frac{L \eta}{2}\right)\|\nabla f(x)\|_{2}^{2}<-\frac{\eta}{2}\|\nabla f(x)\|_{2}^{2} \tag{13}
\end{equation*}
$$

which implies that the algorithm is a descent method.

- Thus, we can obtain that

$$
\begin{align*}
f\left(x^{+}\right) & \leq f(x)-\frac{\eta}{2}\|\nabla f(x)\|_{2}^{2} \tag{14}\\
& \leq f\left(x^{*}\right)+\nabla f(x)^{T}\left(x-x^{*}\right)-\frac{\eta}{2}\|\nabla f(x)\|_{2}^{2} \tag{15}\\
& =f\left(x^{*}\right)+\frac{1}{2 \eta}\left(\left\|x-x^{*}\right\|_{2}^{2}-\left\|x^{+}-x^{*}\right\|_{2}^{2}\right) . \tag{16}
\end{align*}
$$

where the second inequality is due to convexity of f.

- By summing both sides of (14) from $k=1$ to K, it follows that

$$
\begin{aligned}
\sum_{k=1}^{K}\left(f\left(x^{(k+1)}\right)-f\left(x^{*}\right)\right) & \leq \frac{1}{2 \eta}\left(\left\|x^{(1)}-x^{*}\right\|_{2}^{2}-\left\|x^{(K+1)}-x^{*}\right\|_{2}^{2}\right) \\
& \leq \frac{1}{2 \eta}\left\|x^{(1)}-x^{*}\right\|_{2}^{2}
\end{aligned}
$$

- Since it is a decent method,

$$
K\left(f\left(x^{(K+1)}\right)-f\left(x^{*}\right)\right) \leq \sum_{k=1}^{K}\left(f\left(x^{(k)}\right)-f\left(x^{*}\right)\right)
$$

holds. Therefore,

$$
f\left(x^{(K+1)}\right)-f\left(x^{*}\right) \leq \frac{\left\|x^{(1)}-x^{*}\right\|_{2}^{2}}{2 \eta K}
$$

Theorem 2
Under (A1), (A2), and fixed step size $0<\eta<\frac{1}{L+S}$,

$$
f\left(x^{(K+1)}\right)-p^{*} \leq(1-\eta S)^{K}\left(f\left(x^{(1)}\right)-p^{*}\right)
$$

- We need $O(\log (1 / \epsilon))$ iterations to get $f\left(x^{(K)}\right)-p^{*} \leq \epsilon$.
- For simplicity, we denote update rule by $x^{+}=x-\eta \nabla f(x)$.
- As in Theorem $1,-\eta+\frac{\eta^{2} L}{2}<-\frac{\eta}{2}$ holds because the step size η is always smaller than $1 / L$.
- Thus, by (A2), we can get

$$
\begin{align*}
f\left(x^{+}\right) & \leq f(x)-\frac{\eta}{2}\|\nabla f(x)\|_{2}^{2} \tag{17}\\
& \leq f(x)-\eta S\left(f(x)-p^{*}\right) . \tag{18}
\end{align*}
$$

- By subtracting p^{*} from both side, it is obtained that

$$
\begin{equation*}
f\left(x^{+}\right)-p^{*} \leq(1-\eta S)\left(f(x)-p^{*}\right) . \tag{19}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
f\left(x^{(K+1)}\right)-p^{*} \leq(1-\eta S)^{K}\left(f\left(x^{(1)}\right)-p^{*}\right) \tag{20}
\end{equation*}
$$

Stochastic gradient descent method (SGD)

Stochastic gradient

- Often, it is hard to apply the GD to some cases.
- Suppose that the objective function can be decomposed as

$$
f(x)=\sum_{i=1}^{n} f_{i}(x)
$$

- The following are simple cases where it is difficult to apply GD.
- Case 1: n is very large such that computing $\nabla f(x)$ is intractable.
- Case 2: $f(x)$ is not fixed since f_{i} is observed on-line.
- A stochastic gradient is the gradient calculated by some of $f_{i}(x)$.
- Let $\xi=\left(\xi_{1}, \cdots, \xi_{n}\right)^{T} \in \mathbb{R}^{n}$ where $\xi_{i} \in\{0,1\}$ for $i=1, \cdots, n$ be random sampled value.
- The stochastic gradient, $g(x, \xi)$, is defined as

$$
\begin{equation*}
g(x, \xi)=\sum_{i=1}^{n} \xi_{i} \nabla f_{i}(x) \tag{21}
\end{equation*}
$$

- The update rule of SGD is

$$
\begin{equation*}
x^{(k+1)}=x^{(k)}-\eta_{k} g\left(x^{(k)}, \xi^{(k)}\right) \tag{22}
\end{equation*}
$$

in which $\xi^{(k)}$ is randomly sampled at each k-th iteration.

Additional assumptions for SGD

- There exist $\mu_{G} \geq \mu \geq 0$ such that, for all $k \in \mathbb{N}$,

$$
\begin{align*}
\nabla f\left(x^{(k)}\right)^{T} \mathrm{E}_{\xi^{(k)}}\left(g\left(x^{(k)}, \xi^{(k)}\right)\right) & \geq \mu\left\|\nabla f\left(x^{(k)}\right)\right\|_{2}^{2} \tag{23}\\
\left\|\mathrm{E}_{\xi^{(k)}}\left(g\left(x^{(k)}, \xi^{(k)}\right)\right)\right\|_{2} & \leq \mu_{G}\left\|\nabla f\left(x^{(k)}\right)\right\|_{2}
\end{align*}
$$

- There exists $M, M_{V} \geq 0$ such that

$$
\begin{equation*}
\mathrm{E}_{\xi^{(k)}}\left(\left\|g\left(x^{(k)}, \xi^{(k)}\right)\right\|_{2}^{2}\right) \leq M+\left(M_{V}+\mu_{G}^{2}\right)\left\|\nabla f\left(x^{(k)}\right)\right\|_{2}^{2} . \tag{24}
\end{equation*}
$$

Here, we let $M_{G}=M_{V}+\mu_{G}^{2}$.

Lemma 1

Under (A1), (A2), (23), and (24), the following holds

$$
\begin{equation*}
\mathrm{E}\left(f\left(x^{(k+1)}\right)-p^{*}\right) \leq\left(1-\eta_{k} \mu S\right) \mathrm{E}\left(f\left(x^{(k)}\right)-p^{*}\right)+\frac{L}{2} \eta_{k}^{2} M \tag{25}
\end{equation*}
$$

for $0<\eta_{k}<\mu / L M_{G}$.

- For ease of notation, we denote update rule as $x^{+}=x-\eta g(x, \xi)$.
- From Assumption (A1), it follows that

$$
\begin{aligned}
f\left(x^{+}\right) & \leq f(x)+\nabla f(x)^{T}\left(x^{+}-x\right)+\frac{L}{2}\left\|x^{+}-x\right\|_{2}^{2} \\
& =f(x)-\eta \nabla f(x)^{T} g(x, \xi)+\frac{L}{2} \eta^{2}\|g(x, \xi)\|_{2}^{2}
\end{aligned}
$$

- Taking expectations with respect to ξ, we can obtain

$$
\begin{aligned}
\mathrm{E}_{\xi}\left(f\left(x^{+}\right)-f(x)\right) & \leq-\eta \nabla f(x)^{T} \mathrm{E}_{\xi}(g(x, \xi))+\frac{L}{2} \eta^{2} \mathrm{E}_{\xi}\left(\|g(x, \xi)\|_{2}^{2}\right) \\
& \leq-\eta \mu\|\nabla f(x)\|_{2}^{2}+\frac{L}{2} \eta^{2}\left(M+M_{G}\|\nabla f(x)\|_{2}^{2}\right) \\
& =-\eta\left(\mu-\frac{L}{2} \eta M_{G}\right)\|\nabla f(x)\|_{2}^{2}+\frac{L}{2} \eta^{2} M .
\end{aligned}
$$

by Assumption (23) and (24).

- We can take expectation and apply same technique in Theorem 2 as follows:

$$
\mathrm{E}\left(f\left(x^{+}\right)-p^{*}\right) \leq(1-\eta \mu S) \mathrm{E}\left(f(x)-p^{*}\right)+\frac{L}{2} \eta^{2} M
$$

since if f is S-strongly convex, then $\|\nabla f(x)\|_{2}^{2} \geq 2 S\left(f(x)-f\left(x^{*}\right)\right)$, and $0<\eta<\mu / L M_{G}$.

Theorem 3

Under (A1), (A2), (23), and (24), for fixed step size satisfying $0<\eta<\frac{\mu}{L M_{G}}$, the following inequality holds:

$$
\mathrm{E}\left(f\left(x^{(K+1)}\right)-p^{*}\right)-\frac{L \eta M}{2 \mu S} \leq(1-\eta \mu S)^{K}\left(f\left(x^{(1)}\right)-p^{*}-\frac{L \eta M}{2 \mu S}\right)
$$

which implies that

$$
\lim _{k \rightarrow \infty} \mathrm{E}\left(f\left(x^{(k)}\right)-p^{*}\right) \leq \frac{L \eta M}{2 \mu S} .
$$

- From Lemma 1, we can obtain

$$
\mathrm{E}\left(f\left(x^{(k+1)}\right)-p^{*}\right) \leq(1-\eta \mu S) \mathrm{E}\left(f\left(x^{(k)}\right)-p^{*}\right)+\frac{L}{2} \eta^{2} M .
$$

- Let $t=\frac{L \eta M}{2 \mu S}$, then

$$
\mathrm{E}\left(f\left(x^{(k+1)}\right)-p^{*}\right)-t \leq(1-\eta \mu S)\left(\mathrm{E}\left(f\left(x^{(k)}\right)-p^{*}\right)-t\right)
$$

hold. Therefore, the following holds:

$$
\mathrm{E}\left(f\left(x^{(K+1)}\right)-p^{*}\right)-t \leq(1-\eta \mu S)^{K}\left(f\left(x^{(1)}\right)-p^{*}-t\right) .
$$

- Also, since $L \geq S, M_{G}=\mu_{G}^{2}+M_{V} \geq \mu^{2}$,

$$
0<\eta \mu S<\frac{\mu^{2} S}{L M_{G}} \leq 1
$$

Theorem 4

Under (A1), (A2), (23), (24), and for decreasing step size $\eta_{k}=\frac{\beta}{\gamma+k}$ for some $\beta>\frac{1}{\mu S}$ and $\gamma>0$ such that $\eta_{1} \leq \frac{\mu}{L M_{G}}$, expected optimality gap satisfies the following inequality.

$$
\begin{equation*}
\mathrm{E}\left(f\left(x^{(K)}\right)-p^{*}\right) \leq \frac{\nu}{\gamma+K} \tag{26}
\end{equation*}
$$

where

$$
\begin{equation*}
\nu=\max \left\{\frac{\beta^{2} L M}{2(\beta \mu S-1)},(\gamma+1)\left(f\left(x^{(1)}\right)-p^{*}\right)\right\} \tag{27}
\end{equation*}
$$

- Since the step size is decreases as

$$
\eta_{k} \leq \eta_{1} \leq \frac{\mu}{L M_{G}}
$$

we can obtain

$$
\mathrm{E}\left(f\left(x^{(k+1)}\right)-p^{*}\right) \leq\left(1-\eta_{k} \mu S\right) \mathrm{E}\left(f\left(x^{(k)}\right)-p^{*}\right)+\frac{L}{2} \eta_{k}^{2} M
$$

from Lemma 1.

- Then, Theorem can be shown by induction.
- It is obvious that Theorem holds when $k=1$.
- Assume that it holds for some $k>1$ which is

$$
\begin{equation*}
\mathrm{E}\left(f\left(x^{(k)}\right)-p^{*}\right) \leq \frac{v}{\hat{k}} \text { where } \hat{k}=\gamma+k, \tag{28}
\end{equation*}
$$

then since $\eta_{k}=\beta / \hat{k}$,

$$
\begin{align*}
\mathrm{E}\left(f\left(x^{(k+1)}\right)-p^{*}\right) & \leq\left(1-\eta_{k} \mu S\right) \mathrm{E}\left(f\left(x^{(k)}\right)-p^{*}\right)+\frac{L}{2} \eta_{k}^{2} M \\
& \leq\left(1-\frac{\beta \mu S}{\hat{k}}\right) \frac{\nu}{\hat{k}}+\frac{\beta^{2} L M}{2 \hat{k}^{2}} \tag{29}\\
& =\left(\frac{1}{\hat{k}}-\frac{1}{\hat{k}^{2}}\right) \nu-\frac{(\beta \mu s-1) \nu}{\hat{k}^{2}}+\frac{\beta^{2} c M}{2 \hat{k}^{2}}
\end{align*}
$$

holds.

- From the definition of $\nu, \nu \geq \frac{\beta^{2} L M}{2(\beta \mu S-1)}$ holds which implies that

$$
\frac{(\beta \mu S-1) \nu}{\hat{k}^{2}} \geq \frac{\beta^{2} L M}{2 \hat{k}^{2}}
$$

- Therefore, it holds for $k+1$ as follows:

$$
\begin{aligned}
\mathrm{E}\left(f\left(x^{(k+1)}\right)-p^{*}\right) & \leq\left(\frac{1}{\hat{k}}-\frac{1}{\hat{k}^{2}}\right) \nu-\frac{(\beta \mu S-1) \nu}{\hat{k}^{2}}+\frac{\beta^{2} L M}{2 \hat{k}^{2}} \\
& \leq\left(\frac{\hat{k}-1}{\hat{k}^{2}}\right) \nu \leq \frac{1}{\hat{k}+1} \nu .
\end{aligned}
$$

Subgradient method (SM)

- The above two algorithms are used when the objective function could be differentiated.
- The subgradient method (SM) is an algorithm that can be used when the objective function cannot be differentiated.
- A vector $g \in \mathbb{R}^{n}$ is subgradient at x iff

$$
\begin{equation*}
f(y) \geq f(x)+g^{\top}(y-x), \text { for all } y \tag{30}
\end{equation*}
$$

- The set of all subgradient of f at x is called the subdifferential

$$
\begin{equation*}
\partial f(x)=\left\{g \in \mathbb{R}^{n}: f(y) \geq f(x)+g^{T}(y-x)\right\} . \tag{31}
\end{equation*}
$$

- For convex function f,

$$
\begin{equation*}
f\left(x^{*}\right)=\min _{x} f(x) \Longleftrightarrow 0 \in \partial f\left(x^{*}\right) \tag{32}
\end{equation*}
$$

which is called subgradient optimality condition.

- The update rule of SM is that

$$
x^{(k+1)}=x^{(k)}-\eta_{k} g^{(k)},
$$

where $g^{(k)} \in \partial f\left(x^{(k)}\right)$.

- The main difference between SM and GD is that the subgradient method saves the updated solutions, $x^{(k)}$, and selects the solution that makes the objective function the smallest among them as follows:

$$
\widehat{x}^{(K)}=\underset{k=1, \cdots, K}{\operatorname{argmin}} f\left(x^{(k)}\right),
$$

because it is not one of descent method.

Lemma 2

Under (A3), the following holds:

$$
\begin{equation*}
f\left(\hat{x}^{(K)}\right)-p^{*} \leq \frac{R^{2}+C^{2} \sum_{k=1}^{K} \eta_{k}^{2}}{2 \sum_{k=1}^{K} \eta_{k}} \tag{33}
\end{equation*}
$$

where $R=\left\|x^{(1)}-x^{*}\right\|_{2}$ and $\eta_{k}>0$ is an arbitrary step size.

- From the definition of subgradient, we set $y=x+g$ as

$$
f(x+g) \geq f(x)+g^{\top}(x+g-x)=f(x)+\|g\|_{2}^{2}
$$

which implies that

$$
\|g\|_{2}^{2} \leq|f(x+g)-f(x)| \leq C\|g\|_{2} \Rightarrow\|g\|_{2} \leq C
$$

under (A3).

- For simplification, the update rule is denoted by $x^{+}=x-\eta g$.
- Thus, it follows that

$$
\begin{aligned}
\left\|x^{+}-x^{*}\right\|_{2}^{2} & =\left\|x-x^{*}\right\|_{2}^{2}-2 \eta g^{T}\left(x-x^{*}\right)+\eta^{2}\|g\|_{2}^{2} \\
& \leq\left\|x-x^{*}\right\|_{2}^{2}-2 \eta\left(f(x)-f\left(x^{*}\right)\right)+\eta^{2} C^{2}
\end{aligned}
$$

in which the second inequality holds from the definition of subgradient.

- By summing both sides for $k=1$ to K,

$$
\begin{aligned}
& \left\|x^{(K+1)}-x^{*}\right\|_{2}^{2} \\
& \quad \leq\left\|x^{(1)}-x^{*}\right\|_{2}^{2}-2 \sum_{k=1}^{K} \eta_{k}\left(f\left(x^{(k)}\right)-p^{*}\right)+C^{2} \sum_{k=1}^{K} \eta_{k}^{2}(34)
\end{aligned}
$$

- Since $\left\|x^{(K+1)}-x^{*}\right\|_{2}^{2} \geq 0$ and $R=\left\|x^{(1)}-x^{*}\right\|_{2}$,

$$
\begin{equation*}
2 \sum_{k=1}^{K} \eta_{k}\left(f\left(x^{(k)}\right)-p^{*}\right) \leq R^{2}+C^{2} \sum_{k=1}^{K} \eta_{k}^{2} \tag{35}
\end{equation*}
$$

holds.

- In addition,

$$
\begin{equation*}
2\left(f\left(\hat{x}^{(K)}\right)-p^{*}\right) \sum_{k=1}^{K} \eta_{k} \leq 2 \sum_{k=1}^{K} \eta_{k}\left(f\left(x^{(k)}\right)-p^{*}\right) \tag{36}
\end{equation*}
$$

holds because $f\left(\hat{x}^{(K)}\right)=\min _{k=1, \cdots, K} f\left(x^{(k)}\right)$.

- Therefore,

$$
\begin{equation*}
f\left(\hat{x}^{(K)}\right)-p^{*} \leq \frac{R^{2}+C^{2} \sum_{k=1}^{K} \eta_{k}^{2}}{2 \sum_{k=1}^{K} \eta_{k}} \tag{37}
\end{equation*}
$$

Theorem 5

Under (A3) and for fixed step size η,

$$
\begin{equation*}
f\left(\hat{x}^{(K)}\right)-p^{*} \leq \frac{R^{2}}{2 K \eta}+\frac{\eta C^{2}}{2} \tag{38}
\end{equation*}
$$

where $R=\left\|x^{(1)}-x^{*}\right\|_{2}^{2}$ which implies that

$$
\lim _{k \rightarrow \infty} f\left(\hat{x}^{(k)}\right) \leq p^{*}+\frac{\eta C^{2}}{2}
$$

- For making right hand side of above inequality less than ϵ, we can choose

$$
\eta=\frac{\epsilon}{C^{2}}, \quad K=\frac{R^{2}}{\eta \epsilon}=\frac{C^{2} R^{2}}{\epsilon^{2}} .
$$

- That is, we need $O\left(1 / \epsilon^{2}\right)$ iterations to get $f\left(\widehat{x}^{(K)}\right)-p^{*} \leq \epsilon$.

Theorem 6
Under (A3) and diminishing step size η_{k},

$$
f\left(\hat{x}^{(K)}\right)-p^{*} \leq O\left(\frac{1}{\sum_{k=1}^{K} \eta_{k}}\right)
$$

holds which implies that

$$
\lim _{k \rightarrow \infty} f\left(\hat{x}^{(k)}\right)=p^{*}
$$

Proximal gradient method (PG)

- Like the SM, the proximal gradient method (PG) is a method that can be used when the objective function cannot be differentiated, but unlike the SM, suppose that f can be decomposed into

$$
f(x)=g(x)+h(x)
$$

where g is convex and differentiable and h is convex but non-differentiable.

- The motivation for PG is to approximate the differentiable function g at $x=x^{(k)}$ as follows:

$$
g(z) \approx g\left(x^{(k)}\right)+\nabla g\left(x^{(k)}\right)^{T}\left(z-x^{(k)}\right)+\frac{1}{2 \eta_{k}}\left\|z-x^{(k)}\right\|_{2}^{2}:=\tilde{g}(z)
$$

- The update rule of PG is as follows:

$$
\begin{align*}
x^{(k+1)}= & \underset{z}{\operatorname{argmin}} \tilde{g}(z)+h(z) \\
= & \underset{z}{\operatorname{argmin}} g\left(x^{(k)}\right)+\nabla g\left(x^{(k)}\right)^{T}\left(z-x^{(k)}\right)+\frac{1}{2 \eta_{k}}\left\|z-x^{(k)}\right\|_{2}^{2} \\
& \quad+h(z) \\
= & \underset{z}{\operatorname{argmin}} \frac{1}{2 \eta_{k}}\left\|z-\left(x^{(k)}-\eta_{k} \nabla g\left(x^{(k)}\right)\right)\right\|_{2}^{2}+h(z) \tag{39}
\end{align*}
$$

- Here, the proximal mapping is defined as

$$
\begin{equation*}
\operatorname{prox}_{h, \eta_{k}}(y)=\underset{z}{\operatorname{argmin}} \frac{1}{2 \eta_{k}}\|z-y\|_{2}^{2}+h(z) \tag{40}
\end{equation*}
$$

- Thus, the update rule of PG can be expressed as follows.

$$
\begin{aligned}
x^{(k+1)} & =\operatorname{prox}_{h, \eta_{k}}\left(x^{(k)}-\eta_{k} \nabla g\left(x^{(k)}\right)\right) \\
& =x^{(k)}-\eta_{k} G_{\eta_{k}}\left(x^{(k)}\right)
\end{aligned}
$$

where

$$
G_{\eta_{k}}(x)=\frac{x^{(k)}-\operatorname{prox}_{h, \eta_{k}}\left(x^{(k)}-\eta \nabla g\left(x^{(k)}\right)\right)}{\eta_{k}}
$$

- The strength of PG is that the proximal mapping depends only on h not g and can be computed analytically for some h.

Example of proximal gradient descent method: ISTA

- Consider the objective function of Lasso regression

$$
\begin{equation*}
f(\beta)=\underbrace{\frac{1}{2}\|y-X \beta\|_{2}^{2}}_{g(\beta)}+\underbrace{\lambda\|\beta\|_{1}}_{h(\beta)} \tag{41}
\end{equation*}
$$

for given $y \in \mathbb{R}^{n}$ and $X \in \mathbb{R}^{n \times p}$.

- The proximal mapping is

$$
\begin{equation*}
\operatorname{prox}_{h, \eta}(\beta)=\underset{z}{\operatorname{argmin}} A(z) \tag{42}
\end{equation*}
$$

where $A(z)=\frac{1}{2 \eta}\|\beta-z\|_{2}^{2}+\lambda\|z\|_{1}$.

- By subgradient optimal condition (32), z^{*} is optimal if

$$
\begin{equation*}
0 \in \partial A\left(z^{*}\right)=\frac{1}{\eta}\left(z^{*}-\beta\right)+\lambda \partial\left\|z^{*}\right\|_{1} \tag{43}
\end{equation*}
$$

- For some $v \in \partial\left\|z^{*}\right\|_{1}$,

$$
\begin{equation*}
-\frac{1}{\eta}\left(z^{*}-\beta\right)=\lambda v \tag{44}
\end{equation*}
$$

- Choose z^{*} such that

$$
\left[z^{*}\right]_{i}=\left[S_{\lambda \eta}(\beta)\right]_{i}=\left\{\begin{array}{cl}
\beta_{i}-\lambda \eta & \text { if } \beta_{i}>\lambda \eta \tag{45}\\
0 & \text { if }-\lambda \eta \leq \beta_{i} \leq \lambda \eta \\
\beta_{i}+\lambda \eta & \text { if } \beta_{i}<-\lambda \eta
\end{array}\right.
$$

which satisfying subgradient optimal condition.

- Therefore, proximal mapping is

$$
\begin{aligned}
\operatorname{prox}_{h, \eta}(\beta) & =\underset{z}{\operatorname{argmin}} \frac{1}{2 \eta}\|\beta-z\|_{2}^{2}+\lambda\|z\|_{1} \\
& =S_{\lambda \eta}(\beta)
\end{aligned}
$$

- Since $\nabla g(\beta)=-X^{T}(y-X \beta)$, update rule is

$$
\begin{align*}
\beta^{+} & =\operatorname{prox}_{h, \eta}(\beta-\eta \nabla g(\beta)) \tag{46}\\
& =S_{\lambda \eta}\left(\beta+\eta X^{T}(y-X \beta)\right) \tag{47}
\end{align*}
$$

which is called iterative soft-thresholding algorithm (ISTA).

Lemma 3

$$
G_{\eta}(x)-\nabla g(x) \in \partial h\left(x^{+}\right) \text {where } x^{+}=x-\eta G_{\eta}(x)
$$

- By definition of proximal mapping and subgradient optimality,

$$
\begin{equation*}
u=\underset{z}{\operatorname{argmin}} \frac{1}{2 \eta}\|z-x\|_{2}^{2}+h(z) \Longleftrightarrow 0 \in \frac{1}{\eta}(u-x)+\partial h(u) \tag{48}
\end{equation*}
$$

holds. In our case, since

$$
\begin{equation*}
x^{+}=\underset{z}{\operatorname{argmin}} \frac{1}{2 \eta}\|z-(x-\eta \nabla g(x))\|_{2}^{2}+h(z), \tag{49}
\end{equation*}
$$

Lemma holds as follows:

$$
\begin{equation*}
G_{\eta}(x)-\nabla g(x) \in \partial h\left(x^{+}\right) \tag{50}
\end{equation*}
$$

Lemma 4

Assume that g is L-Lipschitz continuous gradient as (A3) and for fixed $0<\eta<1 / L$,

$$
f\left(x^{+}\right) \leq f(z)+G_{\eta}(x)^{T}(x-z)-\frac{\eta}{2}\left\|G_{\eta}(x)\right\|_{2}^{2}
$$

holds for all z where $x^{+}=x-\eta G_{\eta}(x)$.

- By L-Lipschitz condition on g,

$$
\begin{aligned}
f\left(x^{+}\right) & =g\left(x^{+}\right)+h\left(x^{+}\right) \\
& \leq \underbrace{g(x)-\eta \nabla g(x)^{\top} G_{\eta}(x)+\frac{\eta^{2} L}{2}\left\|G_{\eta}(x)\right\|_{2}^{2}}_{T 1}+\underbrace{h\left(x^{+}\right)}_{T 2}(52)
\end{aligned}
$$

holds. Since g is convex and $\eta \leq 1 / L$,

$$
T 1 \leq g(z)+\nabla g(x)^{T}(x-z)-\eta \nabla g(x)^{T} G_{\eta}(x)+\frac{\eta}{2}\left\|G_{\eta}(x)\right\|_{2}^{2}
$$

holds. In addition, from Lemma 3,

$$
\begin{equation*}
T 2 \leq h(z)+\left(G_{\eta}(x)-\nabla g(x)\right)^{T}\left(x^{+}-z\right) \tag{53}
\end{equation*}
$$

holds. Therefore,

$$
\begin{equation*}
T 1+T 2 \leq f(z)+G_{\eta}(x)^{T}(x-z)-\frac{\eta}{2}\left\|G_{\eta}(x)\right\|_{2}^{2} \tag{54}
\end{equation*}
$$

Theorem 7

Assume that g is L-Lipschitz continuous gradient and for fixed step size $0<\eta<1 / L$,

$$
f\left(x^{(K+1)}\right)-p^{*} \leq \frac{\left\|x^{(1)}-x^{*}\right\|_{2}^{2}}{2 \eta K}
$$

holds.

- We need $O(1 / \epsilon)$ iterations to make $f\left(x^{(K+1)}\right)-p^{*} \leq \epsilon$.
- For ease of notation, we denote the update rule by $x^{+}=x-G_{\eta}(x)$.
- Remark: (Lemma 4)

$$
f\left(x^{+}\right) \leq f(z)+G_{\eta}(x)^{T}(x-z)-\frac{\eta}{2}\left\|G_{\eta}(x)\right\|_{2}^{2}
$$

- Since Lemma 4 is satisfied for all z, we can get

$$
f\left(x^{+}\right) \leq f(x)-\frac{\eta}{2}\left\|G_{\eta}(x)\right\|_{2}^{2}
$$

by substituting $z=x$ which implies that it is descent method.

- Substituting $z=x^{*}$ into Lemma 4 makes

$$
\begin{align*}
f\left(x^{+}\right)-p^{*} & \leq G_{\eta}(x)^{T}\left(x-x^{*}\right)-\frac{\eta}{2}\left\|G_{\eta}(x)\right\|_{2}^{2} \tag{55}\\
& =\frac{1}{2 \eta}\left(\left\|x-x^{*}\right\|_{2}^{2}-\left\|x^{+}-x^{*}\right\|_{2}^{2}\right) \tag{56}
\end{align*}
$$

- By summing both sides of inequality for $k=1$ to K, it follows that

$$
\begin{aligned}
\sum_{k=1}^{K}\left(f\left(x^{(k+1)}\right)-p^{*}\right) & \leq \frac{1}{2 \eta}\left(\left\|x^{(1)}-x^{*}\right\|_{2}^{2}-\left\|x^{(K+1)}-x^{*}\right\|_{2}^{2}\right) \\
& \leq \frac{1}{2 \eta}\left\|x^{(1)}-x^{*}\right\|_{2}^{2}
\end{aligned}
$$

Therefore, we can obtain

$$
K\left(f\left(x^{(K+1)}\right)-p^{*}\right) \leq \frac{1}{2 \eta}\left\|x^{(1)}-x^{*}\right\|_{2}^{2} .
$$

Summary

Summary

	A 1	$(\mathrm{~A} 1, \mathrm{~A} 2)$	A 3
GD	c_{1} / K	c_{2}^{K}	\cdot
SGD	\cdot	$c_{3}^{K}+c_{4} ; \mathrm{f}, c_{5} /\left(c_{6}+K\right) ; \mathrm{d}$	\cdot
SM	\cdot	\cdot	$c_{7} / K+c_{8}$
PG	c_{9} / K	\cdot	\cdot

Table 1: Convergence properties of each algorithms with respect to assumptions and step size; K is the number of iterations; c_{i} is some positive constant for $i=1, \cdots, 9 ; \quad$; f ' denotes fixed step size and '; d ' denotes diminishing step size;

