Unconstrained convex optimization
through first-order approximation methods

Sang Jun Moon
August 29, 2020

Statistics, University of Seoul



e Introduction
e Representative algorithms and its convergence properties

e Gradient descent

e Stochastic gradient descent
e Subgradient method

e Proximal gradient method

e Summary



Introduction



Convex optimization problem

e An convex optimization problem is one of the form

min f(x)

X

subject to xeX

where x € RP, f : RP — R is convex function, and X C RP is
convex set.

e We call f the objective function, X the feasible set, and x € X the
constraint.

e An optimal value p* is defined as
p* =inf{f(x):x € X}.

e In addition, if x* € X and f(x*) = p*, then x* is called optimal.



Unconstrained convex optimization problem

e If there are no constraints, we say the problem (1) is unconstrained
convex optimization problem:

min  f(x)

X
e In this presentation, we will deal with the algorithms for solving
unconstrained convex optimization problem.

e Among various algorithms, the algorithms based on the first-order
approximation method and its convergence properties are explained.



Representative algorithms



The algorithms will be introduced can be written as
xk 1) = 5 () 4 Ax(K) (1)

in common where 7, > 0 is called a step size or learning rate and
Ax() is called a direction.
The algorithm varies depending on the type of direction.
The convergence properties of each algorithm can be seen when an
appropriate step size.
The following two types are considered in the selection of step size:
e Fixed constant step size: nx =7
e Diminishing step size: 7, satisfying
Zni < o0, an = o0
= k=1

k=1



Objective function f
To prove convergence property, it is assumed that the objective function
f should satisfy one or more of the following conditions:

e Lipschitz continuous gradient.

e Strong convexity.

e Lipschitz continuous.



Lipschitz continuous gradient condition (Al)

e A differentiable function f is L-Lipschitz continuous gradient iff
IVF(x) = V()2 < Llix —yll2 forall x,y (2)

for some L > 0 where

Vit = (ot G )

e The L-Lipschitz continuous gradient condition guarantees that

fly) < f(X)Jer(X)T(y*XHélly*XH%- (3)



Strong convexity condition (A2)
e A differentiable f is S-strongly convex iff
F(Y) 2 ) + VAT (y = x) + 2y —
e If f is S-strongly convex, then

IVFI3 = 25(F(x) — £(x7))



Lipschitz continuous condition (A3)

e A function f is C-Lipschitz continuous iff
[f(x) = fY) < Clix —yll2 forall x,y (6)

for some s > 0.

e If f is differentiable and C-Lipschitz continuous, then

(IVF(x)|]2 < C forall x
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Gradient descent method (GD)
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Descent methods

e The descent methods satisfy
F(xHD) < F(x(K)

for x(9) £ x* with x(t1) = x(K) 4y, Ax(K),

e From convexity, we know that

f(X(k+1)) _ f(x(k)) > vf(x(k))T(X(kH) — X(k))
= nka(X(k))TAX(k)

e Since VI (x! )T Ax(K) > 0 implies f(x(k+1)) > f(x(9),
VI(x®)Taxk) <o

is necessary condition for descent methods.
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Gradient descent method

e The negative gradient, —Vf(x(")), is the most easily conceived
direction for descent methods.

e This is because, for an arbitrary unit descent direction v, the change
of £(x(¥) is given by

if(x(k) + nkv) = Vf(x(k))Tv.
Tk k=0

which implies that the direction of steepest descent is

v = Vi) /|VF(x1)]..
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e Thus, the update rule of GD,
sk +1) (k) ,7kvf(x(’<))7

intuitively makes sense.

e From now on, we will show the convergence properties which is
defined as the upper bound of f(x(X)) — p* where K is the number
of iterations.
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Theorem 1
Under (A1) and fixed step size 0 < 1 < 1/L, the following property holds

(1) _ *|2
(K+1)y _ % < [[x x*[|3
PO =P = =

e We need O(1/e) iterations to get f(x(K)) — p* <e.

15



e For simplicity, denote update rule as x™ = x — V£ (x).

e From the assumption (A1), (3) holds as follows:

IN

) + VA)TO —x) + 2l —xIf (11)

F(x) - (1—“§|Vﬂn@ (12)

f(x™)

e The range of step size makes upper bound on

— (1= 2 190l <~ ZIV A3 (13)

which implies that the algorithm is a descent method.



e Thus, we can obtain that

fx) < F() = ZIVFI3 (14)
< F(x) + VAT (= x) = Z[VF)I3 - (15)
= )+ 5 (k=B = et =X B (10

where the second inequality is due to convexity of f.

e By summing both sides of (14) from k =1 to K, it follows that

IN

K
* 1 * *
> (F M) = £6c)) < o = IB = ) —xB)

k=1

IN

1 *
Sk — x|

17



e Since it is a decent method,

K(F(xKD) = f:(f(x ~f(x"))

k=1
holds. Therefore,

Ix® — x*|13

f(K+1)7f*<
() = () < B2
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Theorem 2
Under (A1), (A2), and fixed step size 0 < 7 < LJ%S

FO) = p* < (1= 0S)" (F(xM) - p7)

e We need O(log(1/e)) iterations to get f(x(K)) — p* <.
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For simplicity, we denote update rule by x™ = x — nVf(x).

As in Theorem 1, —n + % < —7 holds because the step size 7 is
always smaller than 1/L.

Thus, by (A2), we can get
fx) < FO) = ZIVFI3 (17)
< F(x) = nS(F() = p7). (18)

By subtracting p* from both side, it is obtained that
F(xT) = p" < (1—nS) (f(x) = p"). (19)
Therefore,

F(xKH) — p* < (1= nS)* (F(xM) — p*) (20)
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Stochastic gradient descent method (SGD)
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Stochastic gradient

e Often, it is hard to apply the GD to some cases.

e Suppose that the objective function can be decomposed as
n
f(x) = fi(x).
i=1
e The following are simple cases where it is difficult to apply GD.

e Case 1: n is very large such that computing V£ (x) is intractable.
e Case 2: f(x) is not fixed since f; is observed on-line.
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A stochastic gradient is the gradient calculated by some of f;(x).

Let £ = (&1,--+,&,)T € R” where & € {0,1} for i =1,--- ,n be
random sampled value.

The stochastic gradient, g(x,¢), is defined as

g(x,&) = _Z &V F(x) (21)

The update rule of SGD is
XD = 0 g (), ) (22)

in which £ is randomly sampled at each k-th iteration.
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Additional assumptions for SGD
e There exist ug > p > 0 such that, for all k € N,

Vf(x(k))TEs(k)(g(X(k)7 ")
(1970 (g(x®, W),

> ul|VF(xW)|3
< el VAR
e There exists M, My > 0 such that

Eeoo (lg(x19, £¥N)3) < M+ (My + uZ) [V F (x5 I5.

Here, we let Mg = My + u.
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Lemma 1
Under (A1), (A2), (23), and (24), the following holds

L
E(F(D) = p) < (1= mepS)E(F (V) — p*) + Z1ikM (25)
for 0 < my < pu/LMg.

e For ease of notation, we denote update rule as x* = x — ng(x, £).

e From Assumption (Al), it follows that
L
f(xt) < F(x)+ VFx)T(xT —x)+ §||x+ —x|I3

= )~ V) T8 (6.8 + prPllel Ol
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e Taking expectations with respect to &, we can obtain

Ee(f(x7) - f(x)) < —an(X)TEs(g(X,ﬁ))Jréans(llg(ny)llﬁ)

L
=l VF(IE + 7% (M + Mc|[VF(x)][5)

IN

L L
-1 (u - 277/\4@) IVF(x)II3 + EnzM-

by Assumption (23) and (24).
e We can take expectation and apply same technique in Theorem 2 as
follows:

B(F(x*) ~ p*) < (1~ muS)B(F(x) - p) + 57°M,

since if f is S-strongly convex, then | Vf(x)||3 > 25(f(x) — f(x*)),
and 0 <n < pu/LMg.
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Theorem 3
Under (A1), (A2), (23), and (24), for fixed step size satisfying
0 <1 < g, the following inequality holds:

. LgM . LyM
B(T) - ) - 20 < (1= mus)* (1) - " = 2 )

which implies that
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e From Lemma 1, we can obtain

L
—n?M.

E(F(x"1) = p*) < (1 = nuS)E(F(x) = p*) + 5

Lnl\/l

o Lett = , then

E(f(x**) — p*) — t < (1 — nuS)(E(F(x)) — p*) — 1)
hold. Therefore, the following holds:
B(f(x ) = p*) — t < (1 — quS)¥(F(xM) — p* —1).

e Also, since L > S, Mg = p% + My > 12,

2
uS

<1.

0<77,u5<LM

G
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Theorem 4

Under (A1), (A2), (23), (24), and for decreasing step size 7, = % for
some 3 > ,Tls and v > 0 such that 7 < -, expected optimality gap
satisfies the following inequality.

14

B(x) - ') < (26)
where
v = max A xW) — p*
{ e+ D) = 7)) (27)
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e Since the step size is decreases as

we can obtain
B(f(x* ) — p*) < (1 — nepS)E(F(xH) — p*) +

from Lemma 1.
e Then, Theorem can be shown by induction.

e |t is obvious that Theorem holds when k = 1.

2

L
M,
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e Assume that it holds for some k > 1 which is

E(f(x%)) — p*) < % where k =~ + k, (28)
then since 7, = 5//2,
L
E(f(D) = p") < (1= menS)E(F(x1) — p*) + S0gM
2
< <1—”B’fs>’f FLM (29)
k k 2k?
_ 2
- (AL, ey po
k k2 k? 2k?

holds.
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B2LM
2(BpS—1)

e From the definition of v, v > holds which implies that

(BuS —1)v _ LM
k2 ~ k2

e Therefore, it holds for k + 1 as follows:

BACE) -0 < (775 iz Y%

k-1 1
= v < < V.
k2 k+1

(1_1>V_0mgnu+ﬂ%M
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Subgradient method (SM)
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e The above two algorithms are used when the objective function
could be differentiated.

e The subgradient method (SM) is an algorithm that can be used
when the objective function cannot be differentiated.
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e A vector g € R" is subgradient at x iff
f(y) > f(x)+g"(y —x), forall y.
e The set of all subgradient of f at x is called the subdifferential
Of(x) ={g €R": f(y) > f(x) + &7 (v — x)}-
e For convex function f,
f(x*) = mxin f(x) < 0¢€ of(x")

which is called subgradient optimality condition.

(30)

(31)

(32)
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e The update rule of SM is that

KHL) (k) Q)

X( — Nk,

where g() € 9f (x(¥)).

e The main difference between SM and GD is that the subgradient
method saves the updated solutions, x(k)and selects the solution
that makes the objective function the smallest among them as
follows:

<) = argmin £(x()),
k=1, K

because it is not one of descent method.
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Lemma 2
Under (A3), the following holds:

* < R? 4 C? Zf:l Tlf
— K
2Zk:1 Tk

where R = ||[x(!) — x*||> and 7, > 0 is an arbitrary step size.

f(;((K)) _

37



e From the definition of subgradient, we set y = x + g as
fx+g) 2 f(x)+ g (x+g—x)=f(x)+ gl

which implies that
lgll? < f(x + &) = f(x)] < Cllgll2 = llgll2 < €

under (A3).
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e For simplification, the update rule is denoted by x™ = x — ng.

e Thus, it follows that

" Ix = x*[I3 = 2ng " (x = x*) + n*|lg|3

lIx = x*[13 = 2n(f(x) — £(x*)) +7*C?

Ix* = x5

IN

in which the second inequality holds from the definition of
subgradient.
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e By summing both sides for k =1 to K,

D — |3
K K
< I = x5 =2 mk(F(x®) = p*) + C* D i (34)
k=1 k=1
e Since ||x(K*1) —x*|2 > 0 and R = ||x®) — x*||3,
K K
2> m(F(xXM) = p*) < R*+ C*> i (35)
k=1 k=1

holds.
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e In addition,

holds because (X)) = ming—y ... x fF(x()).

e Therefore,

(36)
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Theorem 5
Under (A3) and for fixed step size 7,

where R = ||x(!) — x*||3 which implies that

2
lim f(x) < p* + et

k—o00 2

e For making right hand side of above inequality less than ¢, we can
choose

¢ . R _CR

=t ne €2

e That is, we need O(1/€?) iterations to get f(X(K)) — p* < e.
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Theorem 6

Under (A3) and diminishing step size 7y,

holds which implies that

lim f(

k—o00

X

k=1 Tk

() = p*

)
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Proximal gradient method (PG)

a4



e Like the SM, the proximal gradient method (PG) is a method that
can be used when the objective function cannot be differentiated,
but unlike the SM, suppose that f can be decomposed into

F(x) = g(x) + h(x)

where g is convex and differentiable and h is convex but
non-differentiable.

e The motivation for PG is to approximate the differentiable function

g at x = x(K) as follows:

1
g(z) = g(x¥) + vg(x()T(z — x) + 5Nl = XM= g(2)
Mk

45



e The update rule of PG is as follows:

LD

argmin g(z) + h(z)

z

z

+h(z)

1
argmin Iz = () — Vg (x9))|3 + h(z)

. 2k

e Here, the proximal mapping is defined as

. 1
proxy, () = argmin = [z — | + h(z2)
z Tk

1
argmin g(x) + Vg(x()7(z —x) + 5 ||z — x|
Mk

(39)

(40)
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e Thus, the update rule of PG can be expressed as follows.

X(k+1) = ProxXu n, (X(k) - nng(X(k)))
= x) _ Uank(X(k))
where
G, (x) = x(k) — proxh,nk(x(k) — an(x(k)))
Mk -

Mk

e The strength of PG is that the proximal mapping depends only on h
not g and can be computed analytically for some h.
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Example of proximal gradient descent method: ISTA
e Consider the objective function of Lasso regression
1 2
() = 5lly — X813+ Bl
——
g(B) (&)
for given y € R"” and X € R"*P.
e The proximal mapping is

prox, ,(3) = argmin A(z)

where A(z) = 51|83 — z|I3 + Allz]|1.
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e By subgradient optimal condition (32), z* is optimal if
* 1 * *
0 € 0A(z*) = E(z —B)+ A0||z*|Ih
e For some v € 9||z*|1,
1
—=(z*=p)=Av
77( )

e Choose z* such that

Bi—An if B; > An
(2] = [Swm(B)]i = 0 if—M<B <A\
Bi+An if Bi < —=\n

which satisfying subgradient optimal condition.

(43)

(45)
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e Therefore, proximal mapping is

o1
prox, () argmmgl\ﬁ—ZII%AHZIIl
= SAn(ﬁ)

e Since Vg(B) = —XT(y — XB3), update rule is

Bt = prox,,(8—nVe(B))
= Sw(B+nX"(y — XB))

which is called iterative soft-thresholding algorithm (ISTA).

(46)
(47)
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Lemma 3

G,(x) — Vg(x) € Oh(x") where x* =x —nG,(x)

e By definition of proximal mapping and subgradient optimality,
.1 5 1
u= argmln%Hz —x|5+h(z) < 0¢€ 5(u —x)+ 0h(u) (48)
holds. In our case, since
o1
xT = argmin ZHZ — (x = nVg(x))|3 + h(2), (49)
Lemma holds as follows:

Gy(x) — Ve(x) € Oh(x™) (50)
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Lemma 4
Assume that g is L-Lipschitz continuous gradient as (A3) and for fixed

0<n<1/L,

F(x*) < F(2) + Gy(x)T (x = 2) = 211G, (B

holds for all z where x* = x — G, (x).
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e By L-Lipschitz condition on g,

F(xT) = &(x)+h(x") (51)

2
< g(x) —nVe(x) G, (x) + %LII Gy(x)13 + h(x*)(52)
——

T1 2
holds. Since g is convex and n < 1/L,
Tl < g(2)+Ve(x) (x —2) = 1Ve(x)"Gy(x) + gll Gy ()13
holds. In addition, from Lemma 3,
T2 < h(z)+(Gy(x) = Vg(x) " (x" - 2) (53)
holds. Therefore,

TL+T2 < f(2)+ 6,097 (x=2) = 26,5 (54)
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Theorem 7

Assume that g is L-Lipschitz continuous gradient and for fixed step size
0<n<1/L,

f-(X(K+1)) _ P* < Hx(l) — X*H%
- 2nK

holds.

e We need O(1/e) iterations to make f(x(K+1)) — p* <.
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e For ease of notation, we denote the update rule by x* = x — G, (x).

e Remark: (Lemma 4)
F(x*) < f(2) + Gy(x) T (x = 2) = gHGn(X)Hg
e Since Lemma 4 is satisfied for all z, we can get
F() < F(x) = 216,013

by substituting z = x which implies that it is descent method.
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e Substituting z = x* into Lemma 4 makes

Fxt) =p" < Gyl (x —x") - g”Gn(X)H% (55)

1 * *
= %(IIX—X 13 = IIx* = x*[I3) (56)

e By summing both sides of inequality for k =1 to K, it follows that

x(tFD) — p*) XI5 = I = x*|2)

Mx

IA

1
— (I1x®
(I

i}
I

IA

1 *
I — <.

Therefore, we can obtain

1
K(FOAD) = p%) < D — x| 3.
U
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Summary
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Summary

Al | (AL A2) A3
GD | a/K | K
SGD | - 4+ aif, os/(c6 + K) id
SM . . /K + cs
PG | /K

Table 1: Convergence properties of each algorithms with respect to
assumptions and step size; K is the number of iterations; ¢; is some positive
constant for i = 1,---,9; /f" denotes fixed step size and ‘;d’ denotes

diminishing step size;



