
Neural Network Pruning

(literature review)

이종진

Seoul National University

ga0408@snu.ac.kr

September 07, 2020

1/36

Table of Contents

1. Learning Both Weights and Connections for Effiecient Neural Networks. (2015,NIPS)

2. Pruning Filters for Efficient Convnets (2017, ICLR)

3. The Lottery Ticket Hypothesis Finding Sparse, Trainable Neural Network.(2018,ICML)

4. Optimal Brain Damage (1990, NIPS)

5. Second Order Derivatives for Network Pruning, Optimal Brain Surgeon (1993, NIPS)

6. EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis (2019, ICML)

7. SNIP, Single-shot Pruning Based on Connection Sensitivity. (2018, ICML)

8. Picking Winning Tickets Before Training by Preserving Gradient Flow. (2020, ICML)

9. A Signal Propagation Perspective for Pruning Neural Networks at Initialization. (2020,

arXiv)

2/36

Sparse

I Neural network pruning

I By removing unimportant weights from a network, several improvements
can be expected.

– Better generalization error.

– Reduce hardware or storage requirements without affecting their accuracy.

3/36

Neural Network Pruning

I Pruning strategies

I Pre-train(Growing) / Prune / Fine-tune.

1. Train a large, over-parameterized model.

– Pre-trained is required/not required.

2. Calculate the importance measure of each parameters, and prune each
parameters based on the calculated measure.

– Importance measures(magnitudes/Increment of loss,)

– Structured pruning/Unstructured pruning.

3. Fine-tune the pruned model.

– Retain/Reinitialize/Rewind

4. Repeat 1∼3.

– Single-shot/Iterative.

4/36

Notation

I Parameters: θ

I Initial value: θ0, pre-trained: θ∗

I q-th parameters: θq, parameters with 0 in q-th component: θ−q.

I Neural network f (x ;θ)

I m indicates masking variables which consists with 0 or 1.

I Pruned network f (x ; m � θ)

I Cross-Entropy: L(θ) =
∑n

i=1 `(yi , fθ(xi))

I Hessian (Fisher information matrix)

H = E[∇θ log p(y |x ;θ)∇θ log p(y |x ;θ)>]

5/36

1. Learning Both Weights and Connections for Effiecient Neural

Networks.(2015,NIPS)

I Pre-trained/magnitude/unstructured/retain/iterative

I Method:

1. Pre-train a given architecture.

2. Prune the connections with their magnitude.(|θ∗|)
(Threshold: C × standard deviation of the layer’s weights)

3. Fine-tuning with retaining pre-trained values.

– f (x ; m � θ∗)

4. Iteratively implemented.

6/36

2. Pruning Filters for Efficient Convnets (2017, ICLR)

I Pre-trained/magnitude/structured/retain/iterative

I Pruning filters in Convolution layer.

I ni : the number of channels for the ith convolutional layer

I hi/wi be the height/widt of the input feature maps.

I Fi,j ∈ Rni×k×k , Fi ∈ Rni+1×ni×k×k

I When a filter Fi,j is pruned, its corresponding feature map x i+1,j is

removed. nik2hi+1wi+1

7/36

2. Pruning Filters for Efficient Convnets (2017, ICLR)

I The importance of a filter in each layer is calculating by the sum of its

absolute weights.

I We prune same ratio for all layers in the same stage.

I Pruning filter results in pruning the corresponding activation.

– Independent pruning

– Greedy pruning(It does not consider the kernels for the previously pruned

feature maps while calculating the importance)

I Retraining

– Prune once and retrain

– Prune and retrain iteratively

I We prune same ratio for all layers in the same stage.

8/36

2. Pruning Filters for Efficient Convnets (2017, ICLR)

I The procedure of pruning m filters from the ith convolutional layer is as
follows:

1. Pre-train a given architecture.

2. Calculate the importance of jth filter (Fi,j) sj =
∑ni

l=1
∑
|Kl |.

3. Prune m filters with the smallest values and their corresponding feature

maps.

9/36

3. The Lottery Ticket Hypothesis Finding Sparse, Trainable Neural Network.

(2018,ICML)

I Pre-trained/magnitude/unstructured/retain/iterative

I Method:

1. Pre-train the given architecture

2. Sort the connections(θ) by its magnitudes within layer.

3. Prune the connections with their magnitude.

(with certain ratio p)
4. Fine-tuning by rewinding original initial values.

– f (x ; m � θ0)

5. Iteratively implemented.

10/36

3. The Lottery Ticket Hypothesis Finding Sparse, Trainable Neural Network.

(2018,ICML)

I There exists the sub-networks with favorable training properties within
larger over-parameterized models.

– Winning tickets f (x ;m � θ0)

– ‖m‖0 � |θ|(fewer parameters) commensurate training time and accuracy.

I To find this lucky sub-network, they iteratively prune the lowest magnitude

unpruned connections.

I Pruning with rewinding is much better than reinitialization

I Many papers struggle to figure it out.

– Reinitializing with preserving sign of parameters shows comparable

performance

– Prune weight based on their change in magnitude between initialization and

the end of training.

– Prune weight globally in larger model.

11/36

4. Optimal Brain Damage (1990, NIPS)

I Pre-trained/Hessian based method/unstructured/retain/iterative

I The importance of the parameter is measured by the effect on the training

loss by enforcing that parameter to be zero.

I From a pre-trained θ∗,

I(θ∗q) = L(θ∗)− L(θ∗−q)

I Appoximate the importance(saliency) of θ∗q by second derivative

approiximation.

12/36

4. Optimal Brain Damage (1990, NIPS)

I Local maximum θ∗

I Approximate the objective function at θ∗ (Hessian based methods)

I ∆L =
∂L
∂θ

>
∆θ︸ ︷︷ ︸

≈0

+ 1
2 ∆θ>H∆θ +O

(
‖∆θ‖3

)
I Then, I(θ∗q) can be approximated by 1

2θ
∗
q
2Hqq

I Diagonal assumption on H(Independence assumption.)

13/36

4. Optimal Brain Damage (1990, NIPS)

1. Pre-train the given architecture to estimate local maximum θ∗

2. Compute the second derivatives Hqq for each parameters

3. Compute the saliences for each parameters: sk = 1
2Hqqθ

∗
q
2

4. Sort the parameters by saliency and prune the paramters

5. Iteratively implement

14/36

5. Second Order Derivatives for Network Pruning, Optimal Brain Surgeon

(1993, NIPS)

I Pre-trained/Hessian based method/unstructured/retain/single-shot

I No restrictive assumptions on the Hessian.(Dependence assumption)

I Does not require retraining after the pruning of a weight.

I ∆θ 6= θ∗ − θ∗−q

I e>q ∆θ+θq = 0

15/36

5. Second Order Derivatives for Network Pruning, Optimal Brain Surgeon

(1993, NIPS)

I The importance(saliency) of each weight is calculated by solving the

following constrained optimization problem

I e>q ∆θ + θq = 0

min
∆θ

1
2

∆θ>H∆θ s.t. e>q ∆θ + θ∗q = 0

I Lagrangian form

L =
1
2

∆θ>H∆θ + λ(e>q ∆θ + θq)

16/36

5. Second Order Derivatives for Network Pruning, Optimal Brain Surgeon

(1993, NIPS)

I By taking functional derivatives,

∆θ = −
θ∗q

[H−1]qq
H−1eq and ∆Lq =

1
2

(
θ∗q
)2

[H−1]qq

17/36

5. Second Order Derivatives for Network Pruning, Optimal Brain Surgeon

(1993, NIPS)

I H ≈ 1
n

∑n
i=1

∂fi (θ)
∂θ

> ∂2L(yi ,fi (θ))

∂f 2i

∂fi (θ)
∂θ

I Denote X i = ∂fi (θ)
∂θ

, Ai = ∂2L(yi ,fi (θ))

∂f 2i

I with H0 = αI and Hn = H and 10−8 ≤ α ≤ 10−4

H i+1 := H i +
1
n
X>i+1AiX i+1 i = 0, . . . , n − 1

I Recursively,

H−1
i+1 = H−1

i −H−1
i X>i+1

(
nAi + X i+1H−1

i X>i
)−1

X i+1H−1
i

18/36

6. EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis

(2019, ICML)

I Pre-trained/Hessian based method/structured/retain/iterative.

I High computational cost of computing second derivatives.

I Kronecker-factored approximate culvature.(K-FAC)

I Structured prunning

I Present two methods

– Kron-OBD, Kron-OBS.

– EigenDamage.

19/36

6. EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis

(2019, ICML)

I Kronecker-Factored Approximation Curvature.

I Kronecker product(mp × nq) of M(m × n), N(p × q)

M ⊗N =


M11N · · · M1nN

...
...

Mm1N · · · MmnN



20/36

6. EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis

(2019, ICML)

I Layerwise independence.

I Input activations a ∈ Rn, weight matrix W ∈ Rn×m, output Rm(s = W Ta)

I ∇WL = a(∇sL)>

I K-FAC decomposes this layer’s Fisher matrix.

H = E[vec{∇WL}vec{∇WL}T]

= E[{∇sL}{∇sL}T ⊗ aaT]

≈ E[{∇sL}{∇sL}T]⊗ E[aaT] = S ⊗ A

21/36

6. EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis

(2019, ICML)

I Efficient computation.(Q and Λ)

H · X = S⊗ A · X = AXS>

H−1 = (S⊗ A)−1 = S−1 ⊗ A−1

H = (QS ⊗QA)(ΛS ⊗ ΛA)(QS ⊗QA)>

I QS ⊗QA gives the eigen basis of the Kronecker product.

22/36

6. EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis

(2019, ICML)

I For ith convolution layer,

I ni : number of channels, hi : height size, wi : weight size, k: filter size.

I x i ∈ Rni×hi×wi , x i+1 ∈ Rni+1×hi+1×wi+1 , Fi,j ∈ Rni×k2
, Fi ∈ Rni×ni+1×k2

23/36

6. EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis

(2019, ICML)

I Ii+1 = [hi+1]× [wi+1], spatial location index for output channel.

I ` ∈ Ii+1, x (`)
i+1 ∈ Rni+1

I Like in the fully connected layer case, ∆WL = a(∆sL)>

the gradient of the kernel matrix Fi =
∑
`∈Ii+1

x
p(`)
i ∇

x
(`)
i+1
L>

I xp(`)
i ∈ Rni k

2
is corresponding patch for l-th spatial location.

I ∇Fi,jL =
∑

l∈Ii+1
xp(`)
i ∇x(`)

i+1
LT , j = 1, . . . , ni+1

24/36

6. EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis

(2019, ICML)

I Then, Hessian matrix can be computed.

H i ≈
∑

l∈Ii+1

E[{∇
x

(`)
i+1
L}{∇

x
(`)
i+1
L}T]⊗ E[x

p(`)
i x

p(`)
i

T]

≈
(

1
|Ii+1|

∑
E[{∇

x
(`)
i+1
L}{∇

x
(`)
i+1
L}T]

)
⊗

 ∑
`∈Ii+1

E[x
p(`)
i x

p(`)
i

T]


:= S ⊗ A

where S is ni+1 × ni+1 and A is nik2 × nik
2 matrix.

25/36

6. EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis

(2019, ICML)

I Without considering the interaction between filters, we can compute the

importance of each filter in ith convolution layer

∆Lj =
1
2
F∗ij >Hi,jF∗ij

where F∗ij ∈ Rni k
2
and Hi,j ∈ Rni k

2
i k

2

I (Convolution) layerwise independence.

I Kron-OBD

∆Fij = −F∗ij and ∆Lj =
1
2
S jjF∗ij >AF∗ij

I Kron-OBS

∆Fij = −
S−1e j ⊗F∗ij

[S−1]jj
and ∆Lj =

1
2
F∗i >AF∗ij

[S−1]jj

where e j is the selecting vector with 1 for elements of Fi,j

26/36

6. EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis

(2019, ICML)

1. Compute Kronecker factors A and S

2. Compute the importance for each filters in each layers.

3. Compute pth percentile of ∆L as τ

4. Update θ as ∆θ(Kron-OBD or Kron-OBS)

5. Finetune the network.

27/36

6. EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis

(2019, ICML)

I Eigendamage based on QS ⊗QA the eigen basis of the Kronecker product.

I Introduce a novel network reparameterization.

Fi = (QS ⊗QA)F
′
i = QAF

′
i Q

>
S , F

′
i = (QS ⊗QA)>Fi

28/36

6. EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis

(2019, ICML)

1. Compute Kronecker factors A and S

2. QS ,ΛS = Eigen(S) and QA,ΛA = Eigen(A)

3. Θ = F
′
i · diag(ΛA) diag(ΛS) · F

′
i

4. for all row (or column) in Θ

∆Lr = θr,.1 or (∆Lc = 1>θ.,c)

5. Remove rth row(or cth column) in W
′
and rth(or cth) eigenbasis in QA(or

QS if ∆Lr (or ∆Lc ≤ τ).

6. Compute pth percentile of ∆L as τ

7. Finetune the network.

29/36

7. SNIP, Single-shot Pruning Based on Connection Sensitivity. (2018, ICML)

I ((((((
Pre − trained/Connection sensitivity/unstructured/retain

I Prunes a given network once at initialization prior to training.

I After pruning, the sparse network is trained in the standard way.

I Determines important connections with a mini-batch of data at single shot.

I The importance(Connection sensitivity) of each parameters is calculated as

follow.

S (θq) = lim
ε→0

∣∣∣∣L (θ0)− L (θ0 + εδq)

ε

∣∣∣∣ =

∣∣∣∣θq ∂L∂θq
∣∣∣∣

30/36

7. SNIP, Single-shot Pruning Based on Connection Sensitivity. (2018, ICML)

1. Variance scaling initialization

2. Using a mini-batch, Compute the connection sensitivity.

S (θq) = lim
ε→0

∣∣∣∣L (θ0)− L (θ0 + εδq)

ε

∣∣∣∣ =

∣∣∣∣θq ∂L∂θq
∣∣∣∣

3. Sort the parameters by their connection sensitivity and prune the

parameters

4. Training the pruned model.

31/36

8. Picking Winning Tickets Before Training by Preserving Gradient Flow.

(2020, ICML)

I GraSP

I ((((((
Pre − trained/Preserving Gradient Flow/unstructured/retain

I It is important to preserve the training dynamics than the loss itself.

I A larger gradient norm indicates that, each gradient update achieves a

greater loss reduction,

∆L(θ) = lim
ε→0

L(θ + ε∇L(θ))− L(θ)

ε
= ∇L(θ)>∇L(θ)

32/36

8. Picking Winning Tickets Before Training by Preserving Gradient Flow.

(2020, ICML)

I Prune the weights whose removal will not reduce the gradient flow.

S(δ) = ∆L (θ0 + δ)−∆L (θ0)︸ ︷︷ ︸
Const

= 2δ>∇2L (θ0)∇L (θ0) +O
(
‖δ‖22

)
= 2δ>Hg +O

(
‖δ‖22

)
I The importance of weights,

S(−θ) = −θ �Hg

– The larger the score of a weight the lower its importance.

– H = I, equals to SNIP.

33/36

8 .Picking Winning Tickets Before Training by Preserving Gradient Flow.

(2020, ICML)

1. Db = {(xi , yi)}bi=1 ∼ D

2. Compute the Hessian-gradient product Hg

3. S (−θ0) = −θ0 �Hg

4. Compute pth percentile of S (−θ0) as τ

5. m = S (−θ0) < τ

6. Train the network fm�θ on D until convergence.

34/36

9. A Signal Propagation Perspective for Pruning Neural Networks at

Initialization. (2020, arXiv)

I Faithful connection sensitivity through layerwise dynamical isometry.

I Layerwise Jacobian

Jl−1,l =
∂xl

∂xl−1 = DlWl

I Layerwise dynamical isometry is that Layerwise Jacobian’s singular values

are exactly 1.

I Reinitialize the weights after pruining by

min
Wl

∥∥∥∥(ml �Wl
)T (

ml �Wl
)
− Il
∥∥∥∥
F

35/36

The end

The end.

36/36

	1. Learning Both Weights and Connections for Effiecient Neural Networks. (2015,NIPS)
	2. Pruning Filters for Efficient Convnets (2017, ICLR)
	3. The Lottery Ticket Hypothesis Finding Sparse, Trainable Neural Network.(2018,ICML)
	4. Optimal Brain Damage (1990, NIPS)
	5. Second Order Derivatives for Network Pruning, Optimal Brain Surgeon (1993, NIPS)
	6. EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis (2019, ICML)
	7. SNIP, Single-shot Pruning Based on Connection Sensitivity. (2018, ICML)
	8. Picking Winning Tickets Before Training by Preserving Gradient Flow. (2020, ICML)
	9. A Signal Propagation Perspective for Pruning Neural Networks at Initialization. (2020, arXiv)

