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Sparse

I Neural network pruning

I By removing unimportant weights from a network, several improvements
can be expected.

– Better generalization error.

– Reduce hardware or storage requirements without affecting their accuracy.
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Neural Network Pruning

I Pruning strategies

I Pre-train(Growing) / Prune / Fine-tune.

1. Train a large, over-parameterized model.

– Pre-trained is required/not required.

2. Calculate the importance measure of each parameters, and prune each
parameters based on the calculated measure.

– Importance measures(magnitudes/Increment of loss, )

– Structured pruning/Unstructured pruning.

3. Fine-tune the pruned model.

– Retain/Reinitialize/Rewind

4. Repeat 1∼3.

– Single-shot/Iterative.
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Notation

I Parameters: θ

I Initial value: θ0, pre-trained: θ∗

I q-th parameters: θq, parameters with 0 in q-th component: θ−q.

I Neural network f (x ;θ)

I m indicates masking variables which consists with 0 or 1.

I Pruned network f (x ; m � θ)

I Cross-Entropy: L(θ) =
∑n

i=1 `(yi , fθ(xi ))

I Hessian (Fisher information matrix)

H = E[∇θ log p(y |x ;θ)∇θ log p(y |x ;θ)>]
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1. Learning Both Weights and Connections for Effiecient Neural

Networks.(2015,NIPS)

I Pre-trained/magnitude/unstructured/retain/iterative

I Method:

1. Pre-train a given architecture.

2. Prune the connections with their magnitude.(|θ∗|)
(Threshold: C × standard deviation of the layer’s weights)

3. Fine-tuning with retaining pre-trained values.

– f (x ; m � θ∗)

4. Iteratively implemented.
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2. Pruning Filters for Efficient Convnets (2017, ICLR)

I Pre-trained/magnitude/structured/retain/iterative

I Pruning filters in Convolution layer.

I ni : the number of channels for the ith convolutional layer

I hi/wi be the height/widt of the input feature maps.

I Fi,j ∈ Rni×k×k , Fi ∈ Rni+1×ni×k×k

I When a filter Fi,j is pruned, its corresponding feature map x i+1,j is

removed. nik2hi+1wi+1
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2. Pruning Filters for Efficient Convnets (2017, ICLR)

I The importance of a filter in each layer is calculating by the sum of its

absolute weights.

I We prune same ratio for all layers in the same stage.

I Pruning filter results in pruning the corresponding activation.

– Independent pruning

– Greedy pruning(It does not consider the kernels for the previously pruned

feature maps while calculating the importance)

I Retraining

– Prune once and retrain

– Prune and retrain iteratively

I We prune same ratio for all layers in the same stage.
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2. Pruning Filters for Efficient Convnets (2017, ICLR)

I The procedure of pruning m filters from the ith convolutional layer is as
follows:

1. Pre-train a given architecture.

2. Calculate the importance of jth filter (Fi,j ) sj =
∑ni

l=1
∑
|Kl |.

3. Prune m filters with the smallest values and their corresponding feature

maps.
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3. The Lottery Ticket Hypothesis Finding Sparse, Trainable Neural Network.

(2018,ICML)

I Pre-trained/magnitude/unstructured/retain/iterative

I Method:

1. Pre-train the given architecture

2. Sort the connections(θ) by its magnitudes within layer.

3. Prune the connections with their magnitude.

(with certain ratio p)
4. Fine-tuning by rewinding original initial values.

– f (x ; m � θ0)

5. Iteratively implemented.
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3. The Lottery Ticket Hypothesis Finding Sparse, Trainable Neural Network.

(2018,ICML)

I There exists the sub-networks with favorable training properties within
larger over-parameterized models.

– Winning tickets f (x ;m � θ0)

– ‖m‖0 � |θ|(fewer parameters) commensurate training time and accuracy.

I To find this lucky sub-network, they iteratively prune the lowest magnitude

unpruned connections.

I Pruning with rewinding is much better than reinitialization

I Many papers struggle to figure it out.

– Reinitializing with preserving sign of parameters shows comparable

performance

– Prune weight based on their change in magnitude between initialization and

the end of training.

– Prune weight globally in larger model.

11/36



4. Optimal Brain Damage (1990, NIPS)

I Pre-trained/Hessian based method/unstructured/retain/iterative

I The importance of the parameter is measured by the effect on the training

loss by enforcing that parameter to be zero.

I From a pre-trained θ∗,

I(θ∗q ) = L(θ∗)− L(θ∗−q)

I Appoximate the importance(saliency) of θ∗q by second derivative

approiximation.

12/36



4. Optimal Brain Damage (1990, NIPS)

I Local maximum θ∗

I Approximate the objective function at θ∗ (Hessian based methods)

I ∆L =
∂L
∂θ

>
∆θ︸ ︷︷ ︸

≈0

+ 1
2 ∆θ>H∆θ +O

(
‖∆θ‖3

)
I Then, I(θ∗q ) can be approximated by 1

2θ
∗
q
2Hqq

I Diagonal assumption on H(Independence assumption.)
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4. Optimal Brain Damage (1990, NIPS)

1. Pre-train the given architecture to estimate local maximum θ∗

2. Compute the second derivatives Hqq for each parameters

3. Compute the saliences for each parameters: sk = 1
2Hqqθ

∗
q
2

4. Sort the parameters by saliency and prune the paramters

5. Iteratively implement
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5. Second Order Derivatives for Network Pruning, Optimal Brain Surgeon

(1993, NIPS)

I Pre-trained/Hessian based method/unstructured/retain/single-shot

I No restrictive assumptions on the Hessian.(Dependence assumption)

I Does not require retraining after the pruning of a weight.

I ∆θ 6= θ∗ − θ∗−q

I e>q ∆θ+θq = 0
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5. Second Order Derivatives for Network Pruning, Optimal Brain Surgeon

(1993, NIPS)

I The importance(saliency) of each weight is calculated by solving the

following constrained optimization problem

I e>q ∆θ + θq = 0

min
∆θ

1
2

∆θ>H∆θ s.t. e>q ∆θ + θ∗q = 0

I Lagrangian form

L =
1
2

∆θ>H∆θ + λ(e>q ∆θ + θq)
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5. Second Order Derivatives for Network Pruning, Optimal Brain Surgeon

(1993, NIPS)

I By taking functional derivatives,

∆θ = −
θ∗q

[H−1]qq
H−1eq and ∆Lq =

1
2

(
θ∗q
)2

[H−1]qq

17/36



5. Second Order Derivatives for Network Pruning, Optimal Brain Surgeon

(1993, NIPS)

I H ≈ 1
n

∑n
i=1

∂fi (θ)
∂θ

> ∂2L(yi ,fi (θ))

∂f 2i

∂fi (θ)
∂θ

I Denote X i = ∂fi (θ)
∂θ

, Ai = ∂2L(yi ,fi (θ))

∂f 2i

I with H0 = αI and Hn = H and 10−8 ≤ α ≤ 10−4

H i+1 := H i +
1
n
X>i+1AiX i+1 i = 0, . . . , n − 1

I Recursively,

H−1
i+1 = H−1

i −H−1
i X>i+1

(
nAi + X i+1H−1

i X>i
)−1

X i+1H−1
i
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6. EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis

(2019, ICML)

I Pre-trained/Hessian based method/structured/retain/iterative.

I High computational cost of computing second derivatives.

I Kronecker-factored approximate culvature.(K-FAC)

I Structured prunning

I Present two methods

– Kron-OBD, Kron-OBS.

– EigenDamage.
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6. EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis

(2019, ICML)

I Kronecker-Factored Approximation Curvature.

I Kronecker product(mp × nq) of M(m × n), N(p × q)

M ⊗N =


M11N · · · M1nN

...
...

Mm1N · · · MmnN


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6. EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis

(2019, ICML)

I Layerwise independence.

I Input activations a ∈ Rn, weight matrix W ∈ Rn×m, output Rm(s = W Ta)

I ∇WL = a(∇sL)>

I K-FAC decomposes this layer’s Fisher matrix.

H = E[vec{∇WL}vec{∇WL}T ]

= E[{∇sL}{∇sL}T ⊗ aaT ]

≈ E[{∇sL}{∇sL}T ]⊗ E[aaT ] = S ⊗ A
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6. EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis

(2019, ICML)

I Efficient computation.(Q and Λ)

H · X = S⊗ A · X = AXS>

H−1 = (S⊗ A)−1 = S−1 ⊗ A−1

H = (QS ⊗QA)(ΛS ⊗ ΛA)(QS ⊗QA)>

I QS ⊗QA gives the eigen basis of the Kronecker product.
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6. EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis

(2019, ICML)

I For ith convolution layer,

I ni : number of channels, hi : height size, wi : weight size, k: filter size.

I x i ∈ Rni×hi×wi , x i+1 ∈ Rni+1×hi+1×wi+1 , Fi,j ∈ Rni×k2
, Fi ∈ Rni×ni+1×k2
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6. EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis

(2019, ICML)

I Ii+1 = [hi+1]× [wi+1], spatial location index for output channel.

I ` ∈ Ii+1, x (`)
i+1 ∈ Rni+1

I Like in the fully connected layer case, ∆WL = a(∆sL)>

the gradient of the kernel matrix Fi =
∑
`∈Ii+1

x
p(`)
i ∇

x
(`)
i+1
L>

I xp(`)
i ∈ Rni k

2
is corresponding patch for l-th spatial location.

I ∇Fi,jL =
∑

l∈Ii+1
xp(`)
i ∇x(`)

i+1
LT , j = 1, . . . , ni+1
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6. EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis

(2019, ICML)

I Then, Hessian matrix can be computed.

H i ≈
∑

l∈Ii+1

E[{∇
x

(`)
i+1
L}{∇

x
(`)
i+1
L}T ]⊗ E[x

p(`)
i x

p(`)
i

T ]

≈
(

1
|Ii+1|

∑
E[{∇

x
(`)
i+1
L}{∇

x
(`)
i+1
L}T ]

)
⊗

 ∑
`∈Ii+1

E[x
p(`)
i x

p(`)
i

T ]


:= S ⊗ A

where S is ni+1 × ni+1 and A is nik2 × nik
2 matrix.
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6. EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis

(2019, ICML)

I Without considering the interaction between filters, we can compute the

importance of each filter in ith convolution layer

∆Lj =
1
2
F∗ij >Hi,jF∗ij

where F∗ij ∈ Rni k
2
and Hi,j ∈ Rni k

2
i k

2

I (Convolution) layerwise independence.

I Kron-OBD

∆Fij = −F∗ij and ∆Lj =
1
2
S jjF∗ij >AF∗ij

I Kron-OBS

∆Fij = −
S−1e j ⊗F∗ij

[S−1]jj
and ∆Lj =

1
2
F∗i >AF∗ij

[S−1]jj

where e j is the selecting vector with 1 for elements of Fi,j
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6. EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis

(2019, ICML)

1. Compute Kronecker factors A and S

2. Compute the importance for each filters in each layers.

3. Compute pth percentile of ∆L as τ

4. Update θ as ∆θ(Kron-OBD or Kron-OBS)

5. Finetune the network.
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6. EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis

(2019, ICML)

I Eigendamage based on QS ⊗QA the eigen basis of the Kronecker product.

I Introduce a novel network reparameterization.

Fi = (QS ⊗QA)F
′
i = QAF

′
i Q

>
S , F

′
i = (QS ⊗QA)>Fi

28/36



6. EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis

(2019, ICML)

1. Compute Kronecker factors A and S

2. QS ,ΛS = Eigen(S) and QA,ΛA = Eigen(A)

3. Θ = F
′
i · diag(ΛA) diag(ΛS) · F

′
i

4. for all row (or column) in Θ

∆Lr = θr,.1 or (∆Lc = 1>θ.,c)

5. Remove rth row(or cth column) in W
′
and rth(or cth) eigenbasis in QA(or

QS if ∆Lr (or ∆Lc ≤ τ).

6. Compute pth percentile of ∆L as τ

7. Finetune the network.
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7. SNIP, Single-shot Pruning Based on Connection Sensitivity. (2018, ICML)

I ((((((
Pre − trained/Connection sensitivity/unstructured/retain

I Prunes a given network once at initialization prior to training.

I After pruning, the sparse network is trained in the standard way.

I Determines important connections with a mini-batch of data at single shot.

I The importance(Connection sensitivity) of each parameters is calculated as

follow.

S (θq) = lim
ε→0

∣∣∣∣L (θ0)− L (θ0 + εδq)

ε

∣∣∣∣ =

∣∣∣∣θq ∂L∂θq
∣∣∣∣
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7. SNIP, Single-shot Pruning Based on Connection Sensitivity. (2018, ICML)

1. Variance scaling initialization

2. Using a mini-batch, Compute the connection sensitivity.

S (θq) = lim
ε→0

∣∣∣∣L (θ0)− L (θ0 + εδq)

ε

∣∣∣∣ =

∣∣∣∣θq ∂L∂θq
∣∣∣∣

3. Sort the parameters by their connection sensitivity and prune the

parameters

4. Training the pruned model.
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8. Picking Winning Tickets Before Training by Preserving Gradient Flow.

(2020, ICML)

I GraSP

I ((((((
Pre − trained/Preserving Gradient Flow/unstructured/retain

I It is important to preserve the training dynamics than the loss itself.

I A larger gradient norm indicates that, each gradient update achieves a

greater loss reduction,

∆L(θ) = lim
ε→0

L(θ + ε∇L(θ))− L(θ)

ε
= ∇L(θ)>∇L(θ)
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8. Picking Winning Tickets Before Training by Preserving Gradient Flow.

(2020, ICML)

I Prune the weights whose removal will not reduce the gradient flow.

S(δ) = ∆L (θ0 + δ)−∆L (θ0)︸ ︷︷ ︸
Const

= 2δ>∇2L (θ0)∇L (θ0) +O
(
‖δ‖22

)
= 2δ>Hg +O

(
‖δ‖22

)
I The importance of weights,

S(−θ) = −θ �Hg

– The larger the score of a weight the lower its importance.

– H = I, equals to SNIP.
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8 .Picking Winning Tickets Before Training by Preserving Gradient Flow.

(2020, ICML)

1. Db = {(xi , yi )}bi=1 ∼ D

2. Compute the Hessian-gradient product Hg

3. S (−θ0) = −θ0 �Hg

4. Compute pth percentile of S (−θ0) as τ

5. m = S (−θ0) < τ

6. Train the network fm�θ on D until convergence.
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9. A Signal Propagation Perspective for Pruning Neural Networks at

Initialization. (2020, arXiv)

I Faithful connection sensitivity through layerwise dynamical isometry.

I Layerwise Jacobian

Jl−1,l =
∂xl

∂xl−1 = DlWl

I Layerwise dynamical isometry is that Layerwise Jacobian’s singular values

are exactly 1.

I Reinitialize the weights after pruining by

min
Wl

∥∥∥∥(ml �Wl
)T (

ml �Wl
)
− Il
∥∥∥∥
F
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The end

The end.
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