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Introduction

I This paper studies the implicit bias of generic optimization
methods in linear model.
e.g., Mirror descent, natural gradient descent and steepest
descent

I We consider underdetermined (X is singular) linear regression
or separable linear classification.

I How can initial value, step size or momentum implicitly
bias the solutions to global minima?



3/23

Contents

1. Problem setting

2. Case 1: losses with a unique finite root (in regression)

3. Case 2: strictly monotone losses (in classification)

4. Gradient descent on the factorized parametrization (in
classification)

5. Summary



4/23

Problem setting

I Suppose we observe a training dataset
{(xn, yn) : n = 1, 2, · · · , N} with features xn ∈ Rd and their
corresponding labels yn ∈ R. We consider a linear model
f(x) = 〈w, x〉 with parameters w ∈ Rd.

I Here, our target objective to minimize is given by

L(w) :=

N∑
n=1

l(f(xn), yn) =

N∑
n=1

l(〈w, xn〉, yn)

where l is an appropriate loss function for target task.

We consider two cases: (1) loss with a unique finite root in
regression problem and (2) strict monotone loss in classification
problem.
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Case 1

I For the first case, we consider the losses with a unique finite
root. That is,

l(ŷt, y)→ inf
ŷ
l(ŷ, y) ⇐⇒ ŷt → y

for any y and sequence ŷt.

I Assume N < d, then the observed feature matrix
X = [x1, · · · , xn]s do not span a full-rank subspace of Rd so
that L(w) has multiple global minima denoted by

G := {w : L(w) = 0} = {w : ∀n, 〈w, xn〉 = yn}.
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Case 1

Here we ask a question: which specific global minima w ∈ G do
different optimization algorithms reach when minimizing L(w)?
To figure out, we consider the following optimization methods.

I Gradient descent

I Mirror descent

I Natural gradient descent

I Steepest descent
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Case 1: Gradient descent

With step size ηt at time step t,

w(t+1) = w(t) − ηt 5L(w(t))

I w(t) → arg minw∈G ||w − w(0)||2
I The iterated parameter converges to the unique global

minimum that is closest to initialization w(0).

I We can verify the same consequence for the SGD (with
momentum and acceleration).

Why? the gradients 5L(w) =
∑

n l
′(〈w, xn〉, yn)xn are

constrained to the fixed subspace spanned by x1, · · · , xN . Thus
w(t) are confined to low dimensional affine manifold
w(0) + span({xn}n).
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Case 1: Mirror descent

Let ψ a strong convex and differentiable function, that we call it
“potential”.

GD : w(t+1) = arg min
w∈W

ηt〈w,5L(w(t))〉+ ||w − w(t)||22

MD : w(t+1) = arg min
w∈W

ηt〈w,5L(w(t))〉+Dψ(w,w(t))

where Dψ(w,w′) = ψ(w)− ψ(w′)− 〈5ψ(w′), w − w′〉 is the
Bregman divergence and W be any constrained parameter set.
e.g.

I ψ(w) = 1
2 ||w||

2
2 : gradient descent

I ψ(w) =
∑

iw[i] logw[i]− w[i] under simplex constraint
W = {w :

∑
iw[i] = 1} : exponentiated gradient descent
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Case 1: Mirror descent

Figure: Gradient descent vs. Mirror descent, http://www.princeton.
edu/~yc5/ele522_optimization/lectures/mirror_descent.pdf

http://www.princeton.edu/~yc5/ele522_optimization/lectures/mirror_descent.pdf
http://www.princeton.edu/~yc5/ele522_optimization/lectures/mirror_descent.pdf
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Case 1: Mirror descent
(Theorem 1) Applying mirror descent algorithm with initial w(0)

and step size ηt, assume the limit of iterated parameter
w∞ = limt→∞w(t) satisfies L(w∞) = 0. Then,

w∞ = arg min
w∈G

Dψ(w,w(0))

I w(0) = arg minw ψ(w)→ w∞ = arg minw∈G ψ(w).

(Theorem 1a) Let a affine constraints W = {w : Gw = h} for
some G ∈ Rd′×d and h ∈ Rd′ (in addition, we assume ∃w ∈ W
such that L(w) = 0) then,

w∞ = arg min
w∈G∩W

Dψ(w,w(0))

I Let ψ(w) =
∑

iw[i] logw[i]− w[i] under simplex constraint
W = {w :

∑
iw[i] = 1} and

w(0) = 1
d1→ w∞ = arg minw∈G

∑
iw[i] logw[i]
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Case 1: Mirror descent

Here we consider with momentum.

I Dual momentum:
5ψ(w(t+1)) = 5(w(t))+βt∆z(t−1)−ηt5L

(
w(t) + γt∆w(t−1)

)
I Primal momentum:
5ψ(w(t+1)) =
5(w(t)) + βt∆w(t−1) − ηt 5L

(
w(t) + γt∆w(t−1)

)
where ∆z(t−1) = 5ψ(w(t))−5ψ(w(t−1)) and
∆w(t−1) = w(t) − w(t−1).

I With dual momentum, the same result holds (Theorem 2).

I However with primal momentum, w(t) strongly depends on
the momentum parameters ((βt, γt)) the step sizes {ηt}
(Example 2 and Proposition 2a : However with primal
momentum only in the first step ((βt, γt) = (0, 0) for t ≥ 2),).
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Case 1: Mirror descent with primal momentum
This example shows the strong dependency of global minima to
momentum parameters and step sizes. l(u, y) = (u− y)2 and
x1 = [1, 2], y1 = 1.

Figure: Mirror descent with primal momentum
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Case 1: Natural gradient descent

I Let a Riemannian metric tensor H that maps w to a positive
definite local metric H(w). In many instances, we consider
H = 52ψ for a strongly convex ψ.

I
w(t+1) = w(t) − ηtH(w(t))

−1 5L(w(t))

I For any positive definite D, if we consider a quadratic
potential ψ(w) = 1

2 ||w||
2
D = 1

2w
>Dw,

lim
t→∞

w(t) = arg min
w∈G

Dψ(w,w(0))
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Case 1: Natural gradient descent
For non quadratic potential, it does not hold (Example 3 and
Proposition 3a). l(u, y) = (u− y)2 and x1 = [1, 2], y1 = 1. Let
ψ(w) =

∑
iw[i] logw[i]− w[i]. For η1 > 0,

lim
t→∞

w(t) = arg min
w∈G

Dψ(w,w(1)) 6= arg min
w∈G

Dψ(w,w(0))

Figure: Natural gradient descent with entropy potential
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Case 1: Steepest descent

w(t+1) = w(t) − ηt∆w(t)

where ∆w(t) = arg minv〈5L(w(t)), v〉+ 1
2 ||v||

2

e.g. w.r.t. l2 norm: gradient descent, w.r.t. l1 norm: coordinate
descent.

I For any positive definite D, when considering
||v||D =

√
v>Dv, then

lim
t→∞

w(t) = arg min
w∈G

Dψ(w,w(0))

I However, for general norms, it does not. (e.g., l4/3 norm,
Example 4.) It strongly depends on the step size.
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Case 1: Steepest descent

l(u, y) = (u− y)2 and x1 = [1, 1, 1], x2 = [1, 2, 0], y1 = 1, y2 = 10

Figure: Steepest descent with l4/3 norm.
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Case 2: classification

I Let consider the classification problem where y ∈ {−1, 1} and
l(f(x), y) is a typically surrogate loss of the 0-1 loss. Here, we
only consider the exponential loss l(f(x), y) = exp(−f(x) · y)
in this paper.

I That is, we consider a strict monotone loss as
l(ŷ, y) is strictly monotonically decreasing in ŷ. Let infy l(ŷ, y) =
0 and limŷy→∞ l(ŷ, y) = 0.
I Gradient descent
I Steepest descent
I Adaptive gradient descent (AdaGrad)
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Case 2 : Gradient descent

I Let the dataset is linearly separable. That is, we assume
∃ : ∀n, yn〈w, xn〉 > 0.

I Then, we cannot consider limt→∞w(t) since
L(w) =

∑
n exp(−yn〈w, xn〉)→ 0 if ||w|| → ∞.

I Instead, we look at the direction

w̄∞ = lim
t→∞

w(t)

||w(t)||
.
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Case 2 : Gradient descent

Soudry et al. (2017) showed that

w̄∞ = lim
t→∞

w(t)

||w(t)||2
= w∗||·||2 = arg max

w:||w||2≤1
min
n
yn〈w, xn〉

That is, gradient descent converges to maximum margin classifier
with unit l2 norm.
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Case 2 : Steepest descent

For the steepest descent algorithm, we observe the similar
consequence (Theorem 5).

w̄∞ = arg max
w:||w||≤1

min
n
yn〈w, xn〉

for any norm || · ||.
I This is independent to the initialization.

I The only requirement is the boundedness of step size: ηt ≤ C
for some big C which only depends on maxn ||xn|| and
L(w(t)).
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Case 2 : AdaGrad

w(t+1) = w(t) − η ·G
−1/2
(t) 5L(w(t))

where G(t) ∈ Rd×d is a diagonal matrix with

G(t)[i, i] =

t∑
u=0

(
5L(w(u))[i]

)2
.

I Here, we need some requirements on the initialization of w
and G.

I (Theorem 6) If G converges, the limit direction depends on
the initial conditions w(0) and G(0).

η

2
L(w(0)) < 1 and ||G−1/4(0) xn||2 ≤ 1,G(t)[i, i] <∞.
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Gradient descent on the factorized parametrization

I For loss having finite unique root, Gunasekar et al (2017).
have already done that the global minima depends on the
initialization and step size.

I (Theorem 7) For monotone loss, this study shows the
robustness of obtained global minima.

W̄∞ = arg max
W≥0

min
n
yn〈W,Xn〉 s.t. ||W ||∗ ≤ 1.

where || · ||∗ is unit nuclear norm.
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Summary

Table: Implicit biases by various optimization algorithms on the linear
model.

Unique root Initial w(0) Step size ηt Momentum (βt, γt)
GD O X X
MD O X (O if p.m.) X (O if p.m.)
NGD O X (O if non-quad.) -
SD O O (except for l2 norm) -

Monotone Initial w(0) Step size ηt Momentum (βt, γt)
GD X X -
SD X X -
AdaGrad 4 4 -


