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Introduction

» This paper studies the implicit bias of generic optimization
methods in linear model.
e.g., Mirror descent, natural gradient descent and steepest
descent

» We consider underdetermined (X is singular) linear regression
or separable linear classification.

» How can initial value, step size or momentum implicitly
bias the solutions to global minima?
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Problem setting

» Suppose we observe a training dataset
{(#p,yn) :n=1,2,--- , N} with features z,, € R? and their
corresponding labels y,, € R. We consider a linear model
f(z) = (w, ) with parameters w € R?.

> Here, our target objective to minimize is given by

N N
ﬁ(w) = Z l(f(mn)v yn) = Z l(<w7 xn>7 yn)
n=1 n=1

where [ is an appropriate loss function for target task.

We consider two cases: (1) loss with a unique finite root in
regression problem and (2) strict monotone loss in classification
problem.



Case 1

» For the first case, we consider the losses with a unique finite
root. That is,

(g, y) — igfl(?% Y) = =y

for any y and sequence g;.

> Assume N < d, then the observed feature matrix
X = [x1,--- ,2,]s do not span a full-rank subspace of R? so
that £(w) has multiple global minima denoted by

G:={w:L(w) =0} ={w:Vn,(w,z,) =yn}



Case 1

Here we ask a question: which specific global minima w € G do
different optimization algorithms reach when minimizing £(w)?
To figure out, we consider the following optimization methods.

> Gradient descent
> Mirror descent
» Natural gradient descent

> Steepest descent



Case 1: Gradient descent

With step size 7, at time step ¢,

W1y = Wiy — 7V L(w)

> wy — argming,cg ||w — w(g)||2
» The iterated parameter converges to the unique global
minimum that is closest to initialization w(q).

» We can verify the same consequence for the SGD (with
momentum and acceleration).

Why? the gradients 7 L(w) = >, U'((w, zn), yn)zy are
constrained to the fixed subspace spanned by x1,--- ,xxn. Thus
w(y) are confined to low dimensional affine manifold

wioy + span({z,}).



Case 1: Mirror descent

Let v a strong convex and differentiable function, that we call it
“potential”.

GD : w41y = argminm(w, VL(we))) + |lw — w3
weW

MD : w41y = arg Hvtin ne{w, VL(wery)) + Dy (w, wp)
we

where Dy (w,w’) = Y(w) — Y (w') — (VY ('), w — w') is the
Bregman divergence and WV be any constrained parameter set.
€.g.
> w( ) = 3||wl|3 : gradient descent
P(w) =Y, wli]log w[i] — wli] under simplex constraint
W {w: >, wli] =1} : exponentiated gradient descent

%



Case 1: Mirror descent
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Figure: Gradient descent vs. Mirror descent, http://www.princeton.
edu/~ycb5/eleb22_optimization/lectures/mirror_descent.pdf


http://www.princeton.edu/~yc5/ele522_optimization/lectures/mirror_descent.pdf
http://www.princeton.edu/~yc5/ele522_optimization/lectures/mirror_descent.pdf

Case 1: Mirror descent
(Theorem 1) Applying mirror descent algorithm with initial wq
and step size 7, assume the limit of iterated parameter
Woo = limy o0 wyy) satisfies L(ws) = 0. Then,

Woo = argmin Dy, (w, wg))
weG

> w(gy = argmin,, P(w) — Weo = argmin,,cg Y(w).
(Theorem 1a) Let a affine constraints W = {w : Gw = h} for
some G € RY*4 and h € RY (in addition, we assume Jw € W
such that £(w) = 0) then,

Woo = arg min Dy, (w, wg))
wegnNw

> Let ¢(w) = ), w[i] log w[i] — wi] under simplex constraint
W={w:)  wli] =1} and
w(g) = %1 — Weo = argmin,,cg »_, wi| logwli]



Case 1: Mirror descent

Here we consider with momentum.

» Dual momentum:
VU (wit1)) = V(we)+B:Az0—1y =V £ (wy + veAwy_1))
» Primal momentum:
V¢(w(t+1)) =
V(we) + Bidwg_1y — e 7 L (wiy + veAwg_1))
where Az_1) = (wy)) — VY (wi—1)) and
Aw(-1) = W) — Wt-1)-
» With dual momentum, the same result holds (Theorem 2).
> However with primal momentum, w strongly depends on
the momentum parameters ((3:,7:)) the step sizes {n;}
(Example 2 and Proposition 2a : However with primal
momentum only in the first step ((8:,v:) = (0,0) for t > 2),).



Case 1: Mirror descent with primal momentum
This example shows the strong dependency of global minima to
momentum parameters and step sizes. [(u,y) = (u — y)? and
T = [1,2],y1 =1.
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(a) Mirror descent primal
momentum (Example 2)

Figure: Mirror descent with primal momentum



Case 1: Natural gradient descent

» Let a Riemannian metric tensor H that maps w to a positive
definite local metric H(w). In many instances, we consider
H = 7% for a strongly convex 1.

>

Wepny = wiey — el (wie) T v L(wg)
» For any positive definite D, if we consider a quadratic

potential 1 (w) = 1||w|[3, = 3w Dw,

tlggo w(y) = ar1gueng11n Dy (w, wgy)



Case 1: Natural gradient descent
For non quadratic potential, it does not hold (Example 3 and
Proposition 3a). I(u,y) = (u —y)? and 21 = [1,2],31 = 1. Let
P(w) =Y, wli]logwli] — wli]. For m >0,

lim wgy = argmin Dy, (w, w arg min Dy, (w, w
A, wey = arg min Dy (w, wq) # argmin Dy (w, w())

1.0 Winit
— MD
— NGD =041
08 - NGD n=0.15
— NGD =02
06
04
WW 7
02 "
00
00 02 04 08 08 1.0

(b) Natural gradient descent
(Example 3)

Figure: Natural gradient descent with entropy potential



Case 1: Steepest descent

Wey1) = Wty — NeAwy,)

where Awy = arg min, (VL(w(y)), v) + Hlvl|?
e.g. w.r.t. [y norm: gradient descent, w.r.t. [; norm: coordinate
descent.

» For any positive definite D, when considering

[lv||p = Vv T Dv, then

g& Wy = arg};;gm Dy (w, wgy)

» However, for general norms, it does not. (e.g., l4/3 norm,
Example 4.) It strongly depends on the step size.



Case 1: Steepest descent
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(c) Steepest descent w.r.t ||.|[4/3
(Example 4)

Figure: Steepest descent with [4,3 norm.



Case 2: classification

> Let consider the classification problem where y € {—1,1} and
I(f(x),y) is a typically surrogate loss of the 0-1 loss. Here, we
only consider the exponential loss I(f(x),y) = exp(—f(x) - y)
in this paper.

P> That is, we consider a strict monotone loss as
I(y,y) is strictly monotonically decreasing in §. Let inf, I(y,y) =
0 and limgy o0 ((9,y) = 0.

> Gradient descent

> Steepest descent
> Adaptive gradient descent (AdaGrad)



Case 2 : Gradient descent

> Let the dataset is linearly separable. That is, we assume
3 Vn, yn(w, z,) > 0.

» Then, we cannot consider lim;_,, wp) since
L(w) =), exp(—=yn(w,zn)) = 0 if [Jw|| = oo.

» Instead, we look at the direction




Case 2 : Gradient descent

Soudry et al. (2017) showed that

w )

], = argmax min Yn (W, Tp)

wil|w|[2<1 ™

Weo = lim

e,
t—00 |wy)||2

That is, gradient descent converges to maximum margin classifier
with unit 9 norm.



Case 2 : Steepest descent

For the steepest descent algorithm, we observe the similar
consequence (Theorem 5).

Woo = arg max min y, (w, )
wi|w]|<1 ™

for any norm || - ||.
» This is independent to the initialization.

» The only requirement is the boundedness of step size: n; < C
for some big C' which only depends on max, ||z,|| and

E(w(t))



Case 2 : AdaGrad

W(tg1) = W) — N G(;)l/2 v L(w)

where G, € R%*? is a diagonal matrix with

t

Gyliri) = Y (VL(wew)[)*

u=0

P> Here, we need some requirements on the initialization of w
and G.

» (Theorem 6) If G converges, the limit direction depends on
the initial conditions w(q) and Gyg).

gﬁ(w(o)) <Tand ||G )/ zall2 < 1, Gy i 1] < .



Gradient descent on the factorized parametrization

» For loss having finite unique root, Gunasekar et al (2017).
have already done that the global minima depends on the
initialization and step size.

» (Theorem 7) For monotone loss, this study shows the
robustness of obtained global minima.

W = arg max min y, (W, X,,) s.t. [|[W]]. < 1.
W>0 n

where || - || is unit nuclear norm.



Summary

Table: Implicit biases by various optimization algorithms on the linear

model.

Unique root | Initial w(q Step size 7, Momentum (¢, 7:)
GD X X

MD o X (O if p.m.) X (O if p.m.)
NGD o X (O if non-quad.) -

SD ) O (except for I3 norm) -
Monotone Initial w() Step size 7, Momentum (¢, ¢)
GD X -

SD X X -
AdaGrad A A -




