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Contributions

» Implicit bias gradient flow of the linear tensor networks.
> Consider two cases(separable classification / undeterminded regression)

» Subsume existing results without removing standard convergence

assumptions.
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Contributions

» Linear tensor networks / classfication
— Singular vectors of a tensor defined by the network.
» Orthogonally decomposable linear network / classification
— A solution of minimizing £»,, max-margin problem in a "transformed"
input space defined by the network.
» Orthogonally decomposable linear network / regression
— A solution of minimizing norm-like functions that interpolates between

weighted ¢1 and ¢> in a "transformed" input space.
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Contributions; in a separable classification

» (Thm 1), A linear tensor networks.
— (Cor 1) A L—layer linear fully-connected network
» (Thm 2), A orthogonally decomposable linear network

— (Cor 2), A L—layer linear diagonal network.

— (Cor 3), A L—layer linear full-length convolution network.
» (Thm 3), A 2—layer linear network with a single data point (x,y)

— (Cor 4), A 2 — layer linear convolutional network with a single data point

(xy)
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Contributions; in a undertermined regression

» (Thm 5), A orthogonally decomposable linear network

— (Cor 5), A L—layer linear diagonal network.

— (Cor 6), A L—layer linear full-length convolution network.

» (Thm 6), A 2—layer linear network with a single data point (x,y).

6/32



Problem settings

> {(xi,y)}1-1, where x; € R? and y; € R
> XGR"Xd,yER"

» For binary classification,

- yi € {£1}

— Data is separable

— Exponential loss, £(y,y) = exp(—7y)
» For regression

— Undetermined case (n > d)

— Squared error loss, £(9,y) = %(}“/ —y)?
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Tensor networks

> A linear map M that maps x to an order- L tensor M(x) € R*t > kL,

where L > 2.
> A tensor network with parameters v; € R¥ and activation &,
Hi(x) = ¢ (M(x) o (v1, lig, . ., Ik, )) € RF XK
Hi(x) = ¢ (Hi—1(x) o (vi, Thpgs- oo Ii)) € RM20K for =2, L —1
f(x;®) =Hi—1(x)ov. €R
where o is a multilinear multiplication.

> Use © to denote the collection of all parameters (v1,...,v.) and name

M(x) as a data tensor.

8/32



A multilinear multiplication

> Given a tensor A € R**"*% and linear maps B; € RP*¥ for | € [L], the
multilinear multiplication o between them is defined as

Z (Al (ejl;l ®-® eJ{ZL) °© (BlTa B BZ—)
L

J1y-ed

— Z [A]j1,m,jL (B1e;;1 R ® BLG;ZL> c RPX XL

Ao(BlT,BzT,...,BLT)

J1s--0JL
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Linear tensor networks

» The tensor formulation includes

1. Diagonal networks
2. Convolution networks

3. Fully-connected networks.

> Consider linear tensor networks, which means ¢(t) = t.
f(x;©) = M(x)o (va,va,...,v)

» The output of the network can also be written as

f(x;0) = x"B(0), where 3(©) € R?
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Diagonal networks

» An L -layer diagonal network can be written as

fdiag (X;@diag )=¢(d(d(xOW) Owa) - O WL—1)T wL

where w; € R? for | € [L].

> Mgiag (x) € R %9 and [Myiag (x)];....; = [xl;, while other components

are 0.

» vi=w forall /
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Convolutional networks

» The convolutional networks can be written as
fconv (X; econv ) - ¢( o ¢(¢ (X * Wl) * W2) Tk WLfl)T wi,
where w; € R¥ with k < d and k. = d, and « defines the circular

convolution.

> axb e RY defined as [ax b]; = Zle[a](;Jrj_l) mod d[b]j, for i € [d]. for any
acR%and b R¥(k < d)

> Meonv (x) € R¥X %5 a5 [Meony (X)]
Jie k), 1e[L].

j1.,J2,- JL = [X](Z/L:Ij,—L+1) mod d 'FOF

» vi=w; and M = Mconv -
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Fully-connected networks

» An L -layer fully-connected network is defined as
fio (iOw) = 6 (-0 (6 (x Wa) Wa) - Wia ) we

where W, € RY*9+1 for | € [L — 1] (we use di = d ) and w; € R,
» One can represent fi; as the tensor form by

— Defining parameters v; = vec (W) for | € [L — 1] and v; = w|

— Constructing the tensor Mg (x) by a recursive "block diagonal" manner.

13/32



Singular value decomposition of tensor

> Given an order- L tensor A € R X%k e define the singular vectors
ui, Uz, ...,u. and singular value s to be the solution of the following

system of equations:
sup=Ao(ur,...,u—1,lk,U1,...,u), for I € [L]

» We can characterize the limit direction of parameters after reaching 100%

training accuracy.
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Theorem 1

Theorem 1

Assume that the gradient flow satisfies £ (© (to)) < 1 for some to > 0 and

XTr(t
XT

converge to the singular vectors of M (—u®°). where r(t) € R" is defined as

XTr(t) converges in direction, say u™ = lim;_ o ol Then, va1,...,vL

(s = £ (F (i O(8)) i) = —yiexp (—yif (xi;©(t)))  for classification,

f(xi;0(t)) — yi for regression.

> v, = 7VV,£(@) =M (7XTF) O(Vl,. Vi1, Ik,, Vigl, .-, VL)7 VI e [L]
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Corollary 1

Corollary 1. (cf. Ji & Telgarsky, 2020)

Consider an L -layer linear fully-connected network. If the training loss satisfies
L (O (o)) < 1 for some to > 0, then Ps. (O1c(t)) converges in a direction that

aligns with the solution of the following optimization problem

minimize,cps  ||2||3  subject to yix[z > 1,Vi € [n]
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Theorem 2

» Theorem 1 is not a full characterization of the limit directions, because
therare usually multiple solutions that satisfy a condition of singular value

and vectors.

» Singular vectors of high order tensors are much less understood than the

matrix conuterparts, let alone orthogonal decompositions.

» The following assumptions defines a class of orthogonally decomposable

data tensors M(x)
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Condition for orthogonally decomposable data tensor.

Assumption 1

For the data tensor M(x) € R¥*"" %k of a3 linear tensor network (6), there
exist a full column rank matrix S € C™*9 (d < m < min,; k) and matrices
Up € CRxm U, € CRX™ such that UMUy = I for all | € [L], and the

data tensor M(x) can be written as

M(x) = D_l8x; ([0 @ [Ua] @ @ (U )
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Theorem 2

Theorem 2

Suppose a linear tensor network satisfies Assumption 1. If there exists A > 0
such that the initial directions V1, ..., v, of the network parameters satisfy
I[U[\ZL‘Z - “ULTVL]J.F > Aforalll € [L—1] and j € [m], then 3(©(t))
converges in a direction that aligns with ST p>°, where p™ € C™ denotes a

stationary point of the following optimization problem

minimizepecm  ||pll2yL  subject to yix[ §Tp>1, Vieln
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Theorem 2

» The gradient flow finds sparse p™ that minimizes the £,,, norm in the

"singular value space," where the data points x; are transformed into

vectors Sx; consisting of singular values of M (x;).

» Also, the proof of Theorem 2 reveals that in case of L = 2, the parameters
vi(t) in fact converge to the top singular vectors of the data tensor
M (fXTr) :

» Compared to Theorem 1. we have a more complete characterization of

"which" singular vectors to converge to.
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Corollary 2

Corollary 2

Consider an L -layer linear diagonal network. If there exists A\ > 0 such that the
initial directions wa, ..., W, of the network parameters satisfy [vT//]f - [v’vL]f > A
for all I € [L —1] and j € [d], then Bdiag (Oudiag (t)) converges in a direction

that aligns with a stationary point z*° of

minimize,cpa  ||2||2/L  subject to yix{ z>1,Vi € [n]
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Corollary 3 (cf. Gunasekar et al., 2018b)

Corollary 3

Consider an L-layer linear full-length convolutional network. If there exists A > 0
such that the initial directions wa, ..., w, of the network parameters satisfy

[1Fw, 27 ][Fm]j(z >\ forall £ € [L—1] and j € [d], then Be,,, (Ocon (t))

converges in a direction that aligns with a stationary point z>° of
minimize,cpa  ||Fz|l2y  subject to  yix[z > 1,Yi € [n].

where F € C/*? to be the matrix of discrete Fourier transform basis

[Flik = % exp (—7‘/_71‘2"%_1)(’(_1)) .
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Corollary 3

» For full-length convolution networks(ky = - -+ = k. = d) satisfy

Assumption 1.

> S=d = and U= = U, =F*
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Theorem 3

Theorem 3

Suppose we have a 2-layer linear tensor network and a single data point (x, y).
Consider the compact SVD M(x) = Us diag(s)U3 , where

U € RX™ U, € R2*™ and s € R™ for m < min {ki, k2} .

Let p>° € R™ be a solution of the following optimization problem
. . T
minimizepocrm  ||plls  subject to ys' p>1

Assume that there exists A > 0 such that the initial directions vy, v» of the
. _ 12 _ 12 .

network parameters satisfy [UlTvl]j - [Uvaz]j > X for all j € [m]. Then, v

and v» converge in direction to Uim° and U.n3°, where

[12°] = [15°| = |p™| ', and sign (117°) = sign(y) © sign (n5°) -
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Underdetermined regression

» Due to the fact that the parameters diverge to infinity in separable

classification problems, so that the initialization becomes unimportant in
the limit.
» This is not the case in regression setting.

» w(0) = aw for £ € [L — 1] and w;(0) = 0.
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Lemma 4

» To define norm like function, We use the following lemma on a relevant

system of ODEs:

Lemma 4

Consider the system of ODEs, where p,q :R — R :
p=p"%q, g=p"" p0)=1, gq(0)=0.

Then, the solutions p;(t) and q.(t) are continuous on their maximal interval of
existence of the form (—c, c) C R for some c € (0, oo].
Define hi(t) = pi(t)" " qi(t); then, h.(t) is odd and strictly increasing,

satisfying limerc hi(t) = oo and limy ¢ hi(t) = —oo.
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Theorem 5

Theorem 5

Suppose a linear tensor network satisfies Assumption 1. Assume further that
the matrices Uy, ..., U, and S from Assumption 1 are all real matrices. For
some A > 0, choose any vector fj € R™ satisfying [ij]; > X for all j € [m], and
choose initial directions v, = Ui} for ¢ € [L — 1] and vy = 0. Then, the linear

coefficients 3(O(t)) converge to ST p>, where p* is the solution of

minimizepezn  Qua.q(p) = — a2 Z[ ]J <aL[F|)7]7J|L> subject to XSTp =y
)j

where Qp a5 : R™ — R is a norm-like function defined using

fo Y(r)dr.
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Theorem 5

> Qua,q(p) = o? jil[ﬁ]fHL ( [p]j|L)

al|;
» Qia,7(p) interpolates between the weighted ¢1 and weighted ¢> norm of p
> HL(t‘)Z
— grows like the absolute value function if t is large.

— grows like a quadratic function if t is close to zero.
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Corollary 5 (cf. Woodworth et al., 2018b)

Corollary 5

Consider an L -layer linear diagonal network. For some A\ > 0, choose any
vector w € R? satisfying [W]? > X for all j € [d], and choose initial directions
w, = w for | € [L — 1] and w, = 0. Then, the linear coefficients

Bdiag (Odiag (t)) converge to the solution z*° of

d
minimize,czs  Qpaw(2) == o Z[W]fHL <[ZLL> subject to Xz=y
« wi;

j=t
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Corollary 6

Corollary 6

Consider an L-layer linear full-length convolutional network. Assume that the
data points {x;};_, are all even. For some X > 0, choose any even vector w
satisfying [Fw]? > X for all j € [d], and choose initial directions W, = w for

I € [L—1] and w, = 0. Then, the linear coefficients 3 (©conv (t)) converge

conv

to the solution z°° of

[Fz];

zeRd, even aL HFW]J|L

d
minimize Qo rw(F2z) := o? Z[FW]J?HL ( ) subject to Xz=y

j=1
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Theorem 6

Theorem 6

Suppose we have a 2-layer linear tensor network and a single data point (x, y).
Consider the compact SVD M(x) = Uy diag(s)U; , where

Ui e RX™ Uy e R2X™ and s € R™ for m < min {ki, ka} . Assume that
there exists A > 0 such that the initial directions V1, v» of the network
parameters satisfy [UlTVlL? — [U;Vz]j > )\ for all j € [m]. Then, gradient flow
converges to a global minimizer of the loss L, and vi(t) and v»(t) converge to

the limit points:

v = al; (u{vl © cosh (g*1 (é) s) 1 UIv2 @ sinh (g*1 (é) s)) to <Ikl TA uI) 2
v = als (val ® cosh <g*1 (é) s) + UV, © sinh (g*1 (é) s)) fa (Ikz - uzul) 7
where g~ is the inverse of the following strictly increasing function

( [val]f:[UzTVz]

gv) =7, [sl; L sinh (2[s];v) + [U{ 7] [U{Vz]j cosh (2[s]ju)>

J
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The end

The End
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