A Unifying view on implicit bias in training linear neural networks.

- Chulhee Yun et al.

이종진

Seoul National University
ga0408@snu.ac.kr

May 20, 2021

Table of Contents

1. Contributions
2. Preliminary
3. main theorems

Contributions

－Implicit bias gradient flow of the linear tensor networks．
－Consider two cases（separable classification／undeterminded regression）
－Subsume existing results without removing standard convergence assumptions．

ㅌ \quad のの

Contributions

- Linear tensor networks / classfication
\rightarrow Singular vectors of a tensor defined by the network.
- Orthogonally decomposable linear network / classification
\rightarrow A solution of minimizing $\ell_{2 / L}$ max-margin problem in a "transformed" input space defined by the network.
- Orthogonally decomposable linear network / regression
\rightarrow A solution of minimizing norm-like functions that interpolates between weighted ℓ_{1} and ℓ_{2} in a "transformed" input space.

Contributions; in a separable classification

- (Thm 1), A linear tensor networks.
- (Cor 1) A L-layer linear fully-connected network
- (Thm 2), A orthogonally decomposable linear network
- (Cor 2), A L-layer linear diagonal network.
- (Cor 3), A L-layer linear full-length convolution network.
- (Thm 3), A 2-layer linear network with a single data point (x, y)
- (Cor 4), A 2 - layer linear convolutional network with a single data point (x, y)

Contributions；in a undertermined regression

－（Thm 5），A orthogonally decomposable linear network
－（Cor 5），A L－layer linear diagonal network．
－（Cor 6），A L－layer linear full－length convolution network．
－（Thm 6），A 2 －layer linear network with a single data point（ x, y ）．

Problem settings

- $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n}$, where $x_{i} \in \mathbb{R}^{d}$ and $y_{i} \in \mathbb{R}$
- $X \in \mathbb{R}^{n \times d}, y \in \mathbb{R}^{n}$
- For binary classification,
- $y_{i} \in\{ \pm 1\}$
- Data is separable
- Exponential loss, $\ell(\hat{y}, y)=\exp (-\hat{y} y)$
- For regression
- Undetermined case ($n \geq d$)
- Squared error loss, $\ell(\hat{y}, y)=\frac{1}{2}(\hat{y}-y)^{2}$

Tensor networks

- A linear map M that maps x to an order- L tensor $\mathrm{M}(x) \in \mathbb{R}^{k_{1} \times \cdots \times k_{L}}$, where $L \geq 2$.
- A tensor network with parameters $v_{l} \in \mathbb{R}^{k_{l}}$ and activation ϕ,

$$
\begin{aligned}
\mathrm{H}_{1}(\boldsymbol{x}) & =\phi\left(\mathrm{M}(\boldsymbol{x}) \circ\left(\boldsymbol{v}_{1}, \boldsymbol{I}_{k_{\mathbf{2}}}, \ldots, \boldsymbol{I}_{k_{L}}\right)\right) \in \mathbb{R}^{k_{\mathbf{2}} \times \cdots \times k_{L}} \\
\mathrm{H}_{l}(\boldsymbol{x}) & =\phi\left(\mathrm{H}_{l-1}(\boldsymbol{x}) \circ\left(\boldsymbol{v}_{l}, \boldsymbol{I}_{k_{l+1}}, \ldots, \boldsymbol{I}_{k_{L}}\right)\right) \in \mathbb{R}^{k_{l+1} \times \ldots, k_{L}}, \text { for } I=2, \ldots, L-1 \\
f(x ; \Theta) & =\mathrm{H}_{L-1}(\boldsymbol{x}) \circ v_{L} \in \mathbb{R}
\end{aligned}
$$

where \circ is a multilinear multiplication.

- Use Θ to denote the collection of all parameters $\left(v_{1}, \ldots, v_{L}\right)$ and name $\mathrm{M}(x)$ as a data tensor.

A multilinear multiplication

- Given a tensor $\mathrm{A} \in \mathbb{R}^{k_{1} \times \cdots \times k_{L}}$ and linear maps $B_{I} \in \mathbb{R}^{p_{I} \times k_{l}}$ for $I \in[L]$, the multilinear multiplication \circ between them is defined as

$$
\begin{aligned}
\mathrm{A} \circ\left(\boldsymbol{B}_{1}^{T}, \boldsymbol{B}_{2}^{T}, \ldots, \boldsymbol{B}_{L}^{T}\right) & =\sum_{j_{1}, \ldots, j_{L}}[\mathrm{~A}]_{j_{1}, \ldots, j_{L}}\left(e_{j_{1}}^{k_{1}} \otimes \cdots \otimes e_{j_{L}}^{k_{L}}\right) \circ\left(\boldsymbol{B}_{1}^{T}, \ldots, \boldsymbol{B}_{L}^{T}\right) \\
& :=\sum_{j_{1}, \ldots, j_{L}}[\mathrm{~A}]_{j_{1}, \ldots, j_{L}}\left(\boldsymbol{B}_{1} e_{j_{1}}^{k_{1}} \otimes \cdots \otimes \boldsymbol{B}_{L} e_{j_{L}}^{k_{L}}\right) \in \mathbb{R}^{p_{1} \times \cdots \times p_{L}}
\end{aligned}
$$

Linear tensor networks

- The tensor formulation includes

1. Diagonal networks
2. Convolution networks
3. Fully-connected networks.

- Consider linear tensor networks, which means $\phi(t)=t$.

$$
f(x ; \Theta)=M(x) \circ\left(v_{1}, v_{2}, \ldots, v_{L}\right)
$$

- The output of the network can also be written as $f(\boldsymbol{x} ; \Theta)=\boldsymbol{x}^{T} \boldsymbol{\beta}(\Theta)$, where $\boldsymbol{\beta}(\Theta) \in \mathbb{R}^{d}$

Diagonal networks

- An L-layer diagonal network can be written as

$$
f_{\text {diag }}\left(x ; \Theta_{\text {diag }}\right)=\phi\left(\cdots \phi\left(\phi\left(x \odot w_{1}\right) \odot w_{2}\right) \cdots \odot w_{L-1}\right)^{T} w_{L}
$$

where $w_{l} \in \mathbb{R}^{d}$ for $I \in[L]$.
$\triangleright \mathrm{M}_{\text {diag }}(x) \in \mathbb{R}^{d \times \cdots \times d}$ and $\left[\mathrm{M}_{\text {diag }}(x)\right]_{j, j, \ldots, j}=[x]_{j}$, while other components are 0 .

- $v_{l}=w_{l}$ for all I

Convolutional networks

- The convolutional networks can be written as

$$
f_{\text {conv }}\left(x ; \Theta_{\text {conv }}\right)=\phi\left(\cdots \phi\left(\phi\left(x \star w_{1}\right) \star w_{2}\right) \cdots \star w_{L-1}\right)^{T} w_{L},
$$

where $w_{l} \in \mathbb{R}^{k_{l}}$ with $k_{l} \leq d$ and $k_{L}=d$, and \star defines the circular convolution.
$\checkmark a \star b \in \mathbb{R}^{d}$ defined as $[a \star b]_{i}=\sum_{j=1}^{k}[a]_{(i+j-1) \bmod d}[b]_{j}$, for $i \in[d]$. for any $a \in \mathbb{R}^{d}$ and $b \in \mathbb{R}^{k}(k \leq d)$
$-\mathrm{M}_{\text {conv }}(x) \in \mathbb{R}^{k_{1} \times \cdots \times k_{L}}$ as $\left[\mathrm{M}_{\text {conv }}(x)\right]_{j_{\mathbf{1}}, j_{\mathbf{2}}, \ldots, j_{L}}=[x]_{\left(\sum_{l=\mathbf{1}}^{L} j_{l}-L+1\right) \bmod d}$ for $j_{l} \in\left[k_{l}\right], I \in[L]$.

- $v_{l}=w_{l}$ and $\mathrm{M}=\mathrm{M}_{\text {conv }}$.

Fully-connected networks

- An L-layer fully-connected network is defined as

$$
f_{\mathrm{fc}}\left(x ; \Theta_{\mathrm{fc}}\right)=\phi\left(\cdots \phi\left(\phi\left(x^{\top} W_{1}\right) W_{2}\right) \cdots W_{L-1}\right) w_{L}
$$

where $W_{l} \in \mathbb{R}^{d_{l} \times d_{l+1}}$ for $I \in[L-1]$ (we use $d_{1}=d$) and $w_{L} \in \mathbb{R}^{d_{L}}$.

- One can represent f_{fc} as the tensor form by
- Defining parameters $v_{l}=\operatorname{vec}\left(\boldsymbol{W}_{l}\right)$ for $I \in[L-1]$ and $v_{L}=w_{L}$
- Constructing the tensor $\mathrm{M}_{\mathrm{fc}}(x)$ by a recursive "block diagonal" manner.

Singular value decomposition of tensor

- Given an order- L tensor $A \in \mathbb{R}^{k_{1} \times \cdots \times k_{L}}$, we define the singular vectors $u_{1}, u_{2}, \ldots, u_{L}$ and singular value s to be the solution of the following system of equations:

$$
s u_{l}=\mathrm{A} \circ\left(u_{1}, \ldots, u_{l-1}, I_{k_{l}}, u_{l+1}, \ldots, u_{L}\right), \text { for } I \in[L]
$$

- We can characterize the limit direction of parameters after reaching 100% training accuracy.

Theorem 1

Theorem 1

Assume that the gradient flow satisfies $\mathcal{L}\left(\Theta\left(t_{0}\right)\right)<1$ for some $t_{0} \geq 0$ and $X^{\top} r(t)$ converges in direction, say $u^{\infty}:=\lim _{t \rightarrow \infty} \frac{x^{\top} r(t)}{\left\|x^{\top} r(t)\right\|_{2}}$. Then, v_{1}, \ldots, v_{L} converge to the singular vectors of $\mathrm{M}\left(-\boldsymbol{u}^{\infty}\right)$. where $\boldsymbol{r}(\boldsymbol{t}) \in \mathbb{R}^{n}$ is defined as
$[r(t)]_{i}=\ell^{\prime}\left(f\left(x_{i} ; \Theta(t)\right), y_{i}\right)= \begin{cases}-y_{i} \exp \left(-y_{i} f\left(x_{i} ; \Theta(t)\right)\right) & \text { for classification, } \\ f\left(x_{i} ; \Theta(t)\right)-y_{i} & \text { for regression. }\end{cases}$
$-\dot{\boldsymbol{v}}_{l}=-\nabla_{\boldsymbol{v}_{l}} \mathcal{L}(\Theta)=\mathrm{M}\left(-\boldsymbol{X}^{\top} \boldsymbol{r}\right) \circ\left(\boldsymbol{v}_{\mathbf{1}}, \ldots, \boldsymbol{v}_{l-1}, \boldsymbol{I}_{\boldsymbol{k}_{l}}, \boldsymbol{v}_{l+1}, \ldots, \boldsymbol{v}_{L}\right), \quad \forall I \in[L]$

Corollary 1

Corollary 1. (cf. Ji \& Telgarsky, 2020)
Consider an L-layer linear fully-connected network. If the training loss satisfies $\mathcal{L}\left(\Theta_{\mathrm{fc}}\left(t_{0}\right)\right)<1$ for some $t_{0} \geq 0$, then $\beta_{\mathrm{fc}}\left(\Theta_{\mathrm{fc}}(t)\right)$ converges in a direction that aligns with the solution of the following optimization problem

$$
\text { minimize }_{z \in \mathbb{R}^{d}} \quad\|z\|_{2}^{2} \quad \text { subject to } \quad y_{i} x_{i}^{T} z \geq 1, \forall i \in[n]
$$

Theorem 2

- Theorem 1 is not a full characterization of the limit directions, because therare usually multiple solutions that satisfy a condition of singular value and vectors.
- Singular vectors of high order tensors are much less understood than the matrix conuterparts, let alone orthogonal decompositions.
- The following assumptions defines a class of orthogonally decomposable data tensors $\boldsymbol{M}(x)$

Condition for orthogonally decomposable data tensor.

Assumption 1

For the data tensor $M(x) \in \mathbb{R}^{k_{1} \times \cdots \times k_{L}}$ of a linear tensor network (6), there exist a full column rank matrix $S \in \mathbb{C}^{m \times d}\left(d \leq m \leq \min , k_{l}\right)$ and matrices $U_{1} \in \mathbb{C}^{k_{1} \times m}, \ldots, U_{L} \in \mathbb{C}^{k_{L} \times m}$ such that $U_{l}^{H} U_{l}=I_{m}$ for all $I \in[\bar{L}]$, and the data tensor $\mathrm{M}(x)$ can be written as

$$
\mathrm{M}(x)=\sum_{j=1}^{m}[\boldsymbol{S} x]_{j}\left(\left[\boldsymbol{U}_{1}\right]_{\cdot, j} \otimes\left[\boldsymbol{U}_{2}\right]_{., j} \otimes \cdots \otimes\left[\boldsymbol{U}_{L}\right]_{*, j}\right)
$$

Theorem 2

Theorem 2

Suppose a linear tensor network satisfies Assumption 1. If there exists $\lambda>0$ such that the initial directions $\bar{v}_{1}, \ldots, \bar{v}_{L}$ of the network parameters satisfy $\left|\left[U_{\ell}^{T} \bar{v}_{l}\right]_{j}\right|^{2}-\left|\left[U_{L}^{T} \bar{v}_{L}\right]_{j}\right|^{2} \geq \lambda$ for all $I \in[L-1]$ and $j \in[m]$, then $\beta(\Theta(t))$ converges in a direction that aligns with $S^{\top} \rho^{\infty}$, where $\rho^{\infty} \in \mathbb{C}^{m}$ denotes a stationary point of the following optimization problem

$$
\text { minimize }_{\rho \in \mathbb{C}^{m}}\|\rho\|_{2 / L} \quad \text { subject to } \quad y_{i} x_{i}^{\top} \boldsymbol{S}^{\top} \rho \geq 1, \quad \forall i \in[n]
$$

Theorem 2

- The gradient flow finds sparse ρ^{∞} that minimizes the $\ell_{2 / L}$ norm in the "singular value space," where the data points x_{i} are transformed into vectors $S x_{i}$ consisting of singular values of $\mathrm{M}\left(x_{i}\right)$.
- Also, the proof of Theorem 2 reveals that in case of $L=2$, the parameters $v_{l}(t)$ in fact converge to the top singular vectors of the data tensor $\mathrm{M}\left(-X^{T} r\right)$;
- Compared to Theorem 1. we have a more complete characterization of "which" singular vectors to converge to.

Corollary 2

Corollary 2

Consider an L-layer linear diagonal network. If there exists $\lambda>0$ such that the initial directions $\bar{w}_{1}, \ldots, \bar{w}_{L}$ of the network parameters satisfy $\left[\bar{w}_{l}\right]_{j}^{2}-\left[\bar{w}_{L}\right]_{j}^{2} \geq \lambda$ for all $I \in[L-1]$ and $j \in[d]$, then $\beta_{\text {diag }}\left(\Theta_{\text {diag }}(t)\right)$ converges in a direction that aligns with a stationary point z^{∞} of

$$
\text { minimize }_{z \in \mathbb{R}^{d}}\|z\|_{2 / L} \text { subject to } y_{i} x_{i}^{T} z \geq 1, \forall i \in[n]
$$

Corollary 3 (cf. Gunasekar et al., 2018b)

Corollary 3

Consider an L-layer linear full-length convolutional network. If there exists $\lambda>0$ such that the initial directions $\bar{w}_{1}, \ldots, \bar{w}_{L}$ of the network parameters satisfy $\left|\left[\boldsymbol{F} \bar{w}_{\ell}\right]_{j}\right|^{2}-\left|\left[\boldsymbol{F} \bar{w}_{L}\right]_{j}\right|^{2} \geq \lambda$ for all $\ell \in[L-1]$ and $j \in[d]$, then $\boldsymbol{\beta}_{\text {conv }}\left(\Theta_{\text {conv }}(t)\right)$ converges in a direction that aligns with a stationary point z^{∞} of

$$
\operatorname{minimize}_{z \in \mathbb{R}^{d}}\|\boldsymbol{F} \boldsymbol{z}\|_{2 / L} \quad \text { subject to } \quad y_{i} \boldsymbol{x}_{i}^{T} z \geq 1, \forall i \in[n] .
$$

where $\boldsymbol{F} \in \mathbb{C}^{d \times d}$ to be the matrix of discrete Fourier transform basis $[F]_{j, k}=\frac{1}{\sqrt{d}} \exp \left(-\frac{\sqrt{-1} \cdot 2 \pi(j-1)(k-1)}{d}\right)$.

Corollary 3

- For full-length convolution networks $\left(k_{1}=\cdots=k_{L}=d\right)$ satisfy

Assumption 1.

- $S=d^{\frac{L-1}{2}}$ and $U_{1}=\cdots=U_{L}=F^{*}$

Theorem 3

Theorem 3

Suppose we have a 2-layer linear tensor network and a single data point (x, y).
Consider the compact $\operatorname{SVD~} \mathrm{M}(x)=U_{1} \operatorname{diag}(s) U_{2}^{T}$, where
$\boldsymbol{U}_{1} \in \mathbb{R}^{k_{1} \times m}, \boldsymbol{U}_{2} \in \mathbb{R}^{k_{2} \times m}$, and $s \in \mathbb{R}^{m}$ for $m \leq \min \left\{k_{1}, k_{2}\right\}$.
Let $\rho^{\infty} \in \mathbb{R}^{m}$ be a solution of the following optimization problem

$$
\operatorname{minimize}_{\rho \in \mathbb{R}^{m}} \quad\|\rho\|_{1} \quad \text { subject to } \quad y s^{T} \rho \geq 1
$$

Assume that there exists $\lambda>0$ such that the initial directions \bar{v}_{1}, \bar{v}_{2} of the network parameters satisfy $\left[\boldsymbol{U}_{1}^{T} \overline{\boldsymbol{v}}_{1}\right]_{j}^{2}-\left[\boldsymbol{U}_{2}^{T} \overline{\boldsymbol{v}}_{2}\right]_{j}^{2} \geq \lambda$ for all $j \in[\mathrm{~m}]$. Then, v_{1} and v_{2} converge in direction to $\boldsymbol{U}_{1} \boldsymbol{\eta}_{1}^{\infty}$ and $U_{2} \eta_{2}^{\infty}$, where $\left|\eta_{1}^{\infty}\right|=\left|\eta_{2}^{\infty}\right|=\left|\rho^{\infty}\right|^{\odot 1 / 2}$, and $\operatorname{sign}\left(\eta_{1}^{\infty}\right)=\operatorname{sign}(y) \odot \operatorname{sign}\left(\eta_{2}^{\infty}\right)$.

Underdetermined regression

- Due to the fact that the parameters diverge to infinity in separable classification problems, so that the initialization becomes unimportant in the limit.
- This is not the case in regression setting.
- $w_{\ell}(0)=\alpha \bar{w}_{\ell}$ for $\ell \in[L-1]$ and $w_{L}(0)=0$.
- To define norm like function, We use the following lemma on a relevant system of ODEs:

Lemma 4

Consider the system of ODEs, where $p, q: \mathbb{R} \rightarrow \mathbb{R}$:

$$
\dot{p}=p^{L-2} q, \quad \dot{q}=p^{L-1}, \quad p(0)=1, \quad q(0)=0
$$

Then, the solutions $p_{L}(t)$ and $q_{L}(t)$ are continuous on their maximal interval of existence of the form $(-c, c) \subset \mathbb{R}$ for some $c \in(0, \infty]$.
Define $h_{L}(t)=p_{L}(t)^{L-1} q_{L}(t)$; then, $h_{L}(t)$ is odd and strictly increasing, satisfying $\lim _{t \uparrow c} h_{L}(t)=\infty$ and $\lim _{t \downarrow-c} h_{L}(t)=-\infty$.

Theorem 5

Theorem 5

Suppose a linear tensor network satisfies Assumption 1. Assume further that the matrices U_{1}, \ldots, U_{L} and S from Assumption 1 are all real matrices. For some $\lambda>0$, choose any vector $\bar{\eta} \in \mathbb{R}^{m}$ satisfying $[\bar{\eta}]_{j}^{2} \geq \lambda$ for all $j \in[m]$, and choose initial directions $\bar{v}_{\ell}=U_{\ell} \bar{\eta}$ for $\ell \in[L-1]$ and $\bar{v}_{L}=0$. Then, the linear coefficients $\beta(\Theta(t))$ converge to $S^{\top} \rho^{\infty}$, where ρ^{∞} is the solution of minimize $_{\boldsymbol{\rho} \in \mathbb{R}^{m}} \quad Q_{L, \alpha, \bar{\eta}}(\rho):=\alpha^{2} \sum_{j=1}^{m}[\bar{\eta}]_{j}^{2} H_{L}\left(\frac{[\rho]_{j}}{\alpha L\left|\bar{\eta}_{j}\right|^{L}}\right) \quad$ subject to $\quad X \boldsymbol{S}^{\top} \boldsymbol{\rho}=\boldsymbol{y}$
where $Q_{L, \alpha, \bar{\eta}}: \mathbb{R}^{m} \rightarrow \mathbb{R}$ is a norm-like function defined using $H_{L}(t):=\int_{0}^{t} h_{L}^{-1}(\tau) d \tau$.

Theorem 5

- $Q_{L, \alpha, \bar{\eta}}(\rho):=\alpha^{2} \sum_{j=1}^{m}[\bar{\eta}]_{j}^{2} H_{L}\left(\frac{[\rho]_{j}}{\alpha L\left|\bar{\eta}_{j}\right|^{L}}\right)$
- $Q_{L, \alpha, \bar{\eta}}(\rho)$ interpolates between the weighted ℓ_{1} and weighted ℓ_{2} norm of ρ
- $H_{L}(t)$:
- grows like the absolute value function if t is large.
- grows like a quadratic function if t is close to zero.

Corollary 5 (cf. Woodworth et al., 2018b)

Corollary 5

Consider an L-layer linear diagonal network. For some $\lambda>0$, choose any vector $\bar{w} \in \mathbb{R}^{d}$ satisfying $[\bar{w}]_{j}^{2} \geq \lambda$ for all $j \in[d]$, and choose initial directions $\bar{w}_{I}=\bar{w}$ for $I \in[L-1]$ and $\bar{w}_{L}=0$. Then, the linear coefficients $\beta_{\text {diag }}\left(\Theta_{\text {diag }}(t)\right)$ converge to the solution z^{∞} of $\operatorname{minimize}_{z \in \mathbb{R}^{d}} \quad Q_{L, \alpha, \bar{w}}(z):=\alpha^{2} \sum_{j=1}^{d}[\bar{w}]_{j}^{2} H_{L}\left(\frac{[z]_{j}}{\alpha^{L}\left|[w]_{j}\right|^{2}}\right)$ subject to $\boldsymbol{X} z=y$

Corollary 6

Corollary 6

Consider an L-layer linear full-length convolutional network. Assume that the data points $\left\{x_{i}\right\}_{i=1}^{n}$ are all even. For some $\lambda>0$, choose any even vector \bar{w} satisfying $[F \bar{w}]_{j}^{2} \geq \lambda$ for all $j \in[d]$, and choose initial directions $\bar{w}_{l}=\bar{w}$ for $I \in[L-1]$ and $\bar{w}_{L}=0$. Then, the linear coefficients $\boldsymbol{\beta}_{\text {conv }}\left(\Theta_{\text {conv }}(t)\right)$ converge to the solution z^{∞} of
$\underset{z \in \mathbb{R}^{d}, \text { even }}{\operatorname{minimize}} Q_{L, \alpha, \boldsymbol{F} \bar{w}}(\boldsymbol{F} \boldsymbol{z}):=\alpha^{2} \sum_{j=1}^{d}[\boldsymbol{F} \overline{\boldsymbol{w}}]_{j}^{2} H_{L}\left(\frac{[\boldsymbol{F} \boldsymbol{z}]_{j}}{\alpha^{L}\left|[\boldsymbol{F} \overline{\boldsymbol{w}}]_{j}\right|^{L}}\right) \quad$ subject to $\quad \boldsymbol{X} \boldsymbol{z}=\boldsymbol{y}$

Theorem 6

Theorem 6

Suppose we have a 2-layer linear tensor network and a single data point (x, y).
Consider the compact $\operatorname{SVD} M(x)=U_{1} \operatorname{diag}(s) U_{2}^{T}$, where
$\boldsymbol{U}_{1} \in \mathbb{R}^{k_{1} \times m}, \boldsymbol{U}_{2} \in \mathbb{R}^{k_{\mathbf{2} \times m}}$, and $s \in \mathbb{R}^{m}$ for $m \leq \min \left\{k_{1}, k_{2}\right\}$. Assume that there exists $\lambda>0$ such that the initial directions \bar{v}_{1}, \bar{v}_{2} of the network parameters satisfy $\left[\boldsymbol{U}_{1}^{T} \overline{\mathbf{v}}_{1}\right]_{j}^{2}-\left[\boldsymbol{U}_{2}^{T} \overline{\mathbf{v}}_{2}\right]_{j}^{2} \geq \lambda$ for all $j \in[\mathrm{~m}]$. Then, gradient flow converges to a global minimizer of the loss \mathcal{L}, and $v_{1}(t)$ and $v_{2}(t)$ converge to the limit points:

$$
\begin{aligned}
& v_{1}^{\infty}=\alpha \boldsymbol{U}_{1}\left(\boldsymbol{U}_{1}^{T} \overline{\mathbf{v}}_{1} \odot \cosh \left(g^{-1}\left(\frac{y}{\alpha^{2}}\right) s\right)+\boldsymbol{U}_{2}^{T} \overline{\boldsymbol{v}}_{2} \odot \sinh \left(g^{-1}\left(\frac{y}{\alpha^{2}}\right) s\right)\right)+\alpha\left(\boldsymbol{I}_{k_{1}}-\boldsymbol{U}_{1} \boldsymbol{U}_{1}^{T}\right) \overline{\boldsymbol{v}}_{1} \\
& v_{1}^{\infty}=\alpha \boldsymbol{U}_{2}\left(\boldsymbol{U}_{1}^{T} \overline{\boldsymbol{v}}_{1} \odot \cosh \left(g^{-1}\left(\frac{y}{\alpha^{2}}\right) s\right)+\boldsymbol{U}_{2}^{T} \overline{\mathbf{v}}_{2} \odot \sinh \left(g^{-1}\left(\frac{y}{\alpha^{2}}\right) s\right)\right)+\alpha\left(\boldsymbol{I}_{k_{\mathbf{2}}}-\boldsymbol{U}_{2} \boldsymbol{U}_{2}^{T}\right) \overline{\boldsymbol{v}}_{\mathbf{2}}
\end{aligned}
$$

where g^{-1} is the inverse of the following strictly increasing function

$$
g(\nu)=\sum_{j=1}^{m}[s]_{j}\left(\frac{\left[U_{1}^{T} \bar{v}_{1}\right]_{j}^{2}+\left[U_{2}^{T} \bar{v}_{2}\right]_{j}^{2}}{2} \sinh \left(2[s]_{j} \nu\right)+\left[U_{1}^{T} \bar{v}_{1}\right]_{j}\left[U_{2}^{T} \bar{v}_{2}\right]_{j} \cosh \left(2[s]_{j} \nu\right)\right)
$$

The end

The End

