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Contributions

I Implicit bias gradient flow of the linear tensor networks.

I Consider two cases(separable classification / undeterminded regression)

I Subsume existing results without removing standard convergence

assumptions.
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Contributions

I Linear tensor networks / classfication

→ Singular vectors of a tensor defined by the network.

I Orthogonally decomposable linear network / classification

→ A solution of minimizing `2/L max-margin problem in a "transformed"

input space defined by the network.

I Orthogonally decomposable linear network / regression

→ A solution of minimizing norm-like functions that interpolates between

weighted `1 and `2 in a "transformed" input space.
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Contributions; in a separable classification

I (Thm 1), A linear tensor networks.

– (Cor 1) A L−layer linear fully-connected network

I (Thm 2), A orthogonally decomposable linear network

– (Cor 2), A L−layer linear diagonal network.
– (Cor 3), A L−layer linear full-length convolution network.

I (Thm 3), A 2−layer linear network with a single data point (x,y)

– (Cor 4), A 2− layer linear convolutional network with a single data point

(x,y)
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Contributions; in a undertermined regression

I (Thm 5), A orthogonally decomposable linear network

– (Cor 5), A L−layer linear diagonal network.
– (Cor 6), A L−layer linear full-length convolution network.

I (Thm 6), A 2−layer linear network with a single data point (x,y).
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Problem settings

I {(xi , yi )}ni=1, where xi ∈ Rd and yi ∈ R

I X ∈ Rn×d , y ∈ Rn

I For binary classification,

– yi ∈ {±1}
– Data is separable

– Exponential loss, `(ŷ , y) = exp(−ŷy)

I For regression

– Undetermined case (n ≥ d)

– Squared error loss, `(ŷ , y) = 1
2 (ŷ − y)2
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Tensor networks

I A linear map M that maps x to an order- L tensor M(x) ∈ Rk1×···×kL ,

where L ≥ 2.

I A tensor network with parameters vl ∈ Rkl and activation φ,

H1(x) = φ (M(x) ◦ (v1, I k2 , . . . , I kL)) ∈ Rk2×···×kL

Hl(x) = φ
(
Hl−1(x) ◦

(
v l , I kl+1 , . . . , I kL

))
∈ Rkl+1×...,kL , for l = 2, . . . , L− 1

f (x ; Θ) = HL−1(x) ◦ vL ∈ R

where ◦ is a multilinear multiplication.

I Use Θ to denote the collection of all parameters (v1, . . . , vL) and name

M(x) as a data tensor.
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A multilinear multiplication

I Given a tensor A ∈ Rk1×···×kL and linear maps Bl ∈ Rpl×kl for l ∈ [L], the

multilinear multiplication ◦ between them is defined as

A ◦
(
BT

1 ,B
T
2 , . . . ,B

T
L

)
=
∑

j1,...,jL

[A]j1,...,jL

(
ek1j1 ⊗ · · · ⊗ ekLjL

)
◦
(
BT

1 , . . . ,B
T
L

)
:=

∑
j1,...,jL

[A]j1,...,jL

(
B1e

k1
j1
⊗ · · · ⊗ BLe

kL
jL

)
∈ Rp1×···×pL
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Linear tensor networks

I The tensor formulation includes

1. Diagonal networks

2. Convolution networks

3. Fully-connected networks.

I Consider linear tensor networks, which means φ(t) = t.

f (x ; Θ) = M(x) ◦ (v1, v2, . . . , vL)

I The output of the network can also be written as

f (x ; Θ) = xTβ(Θ), where β(Θ) ∈ Rd
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Diagonal networks

I An L -layer diagonal network can be written as

fdiag (x ; Θdiag ) = φ (· · ·φ (φ (x � w1)� w2) · · · � wL−1)T wL

where wl ∈ Rd for l ∈ [L].

I Mdiag (x) ∈ Rd×···×d and [Mdiag (x)]j,j,...,j = [x ]j , while other components

are 0.

I vl = wl for all l
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Convolutional networks

I The convolutional networks can be written as

fconv (x ; Θconv ) = φ (· · ·φ (φ (x ? w1) ? w2) · · · ? wL−1)T wL,

where wl ∈ Rkl with kl ≤ d and kL = d , and ? defines the circular

convolution.

I a ? b ∈ Rd defined as [a ? b]i =
∑k

j=1[a](i+j−1) mod d [b]j , for i ∈ [d ]. for any

a ∈ Rd and b ∈ Rk(k ≤ d)

I Mconv (x) ∈ Rk1×···×kL as [Mconv (x)]j1,j2,...,jL = [x ](
∑L

l=1 jl−L+1) mod d for

jl ∈ [kl ], l ∈ [L].

I vl = wl and M = Mconv .
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Fully-connected networks

I An L -layer fully-connected network is defined as

ffc (x ; Θfc) = φ
(
· · ·φ

(
φ
(
xTW1

)
W2

)
· · ·WL−1

)
wL

where W l ∈ Rdl×dl+1 for l ∈ [L− 1] (we use d1 = d ) and wL ∈ RdL .

I One can represent ffc as the tensor form by

– Defining parameters vl = vec (W l ) for l ∈ [L− 1] and vL = wL

– Constructing the tensor Mfc(x) by a recursive "block diagonal" manner.
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Singular value decomposition of tensor

I Given an order- L tensor A ∈ Rk1×···×kL , we define the singular vectors

u1, u2, . . . , uL and singular value s to be the solution of the following

system of equations:

sul = A ◦ (u1, . . . , ul−1, Ikl , ul+1, . . . , uL) , for l ∈ [L]

I We can characterize the limit direction of parameters after reaching 100%

training accuracy.
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Theorem 1

Theorem 1

Assume that the gradient flow satisfies L (Θ (t0)) < 1 for some t0 ≥ 0 and

XT r(t) converges in direction, say u∞ := limt→∞
XT r(t)

‖XT r(t)‖2
. Then, v1, . . . , vL

converge to the singular vectors of M (−u∞). where r(t) ∈ Rn is defined as

[r(t)]i = `′ (f (xi ; Θ(t)) , yi ) =

 −yi exp (−yi f (xi ; Θ(t))) for classification,

f (xi ; Θ(t))− yi for regression.

I v̇ l = −∇v lL(Θ) = M
(
−XT r

)
◦ (v1, . . . , v l−1, I kl , v l+1, . . . , vL) , ∀l ∈ [L]
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Corollary 1

Corollary 1. (cf. Ji & Telgarsky, 2020)

Consider an L -layer linear fully-connected network. If the training loss satisfies

L (Θfc (t0)) < 1 for some t0 ≥ 0, then βfc (Θfc(t)) converges in a direction that

aligns with the solution of the following optimization problem

minimizez∈Rd ‖z‖22 subject to yixT
i z ≥ 1, ∀i ∈ [n]
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Theorem 2

I Theorem 1 is not a full characterization of the limit directions, because

therare usually multiple solutions that satisfy a condition of singular value

and vectors.

I Singular vectors of high order tensors are much less understood than the

matrix conuterparts, let alone orthogonal decompositions.

I The following assumptions defines a class of orthogonally decomposable

data tensors M(x)
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Condition for orthogonally decomposable data tensor.

Assumption 1

For the data tensor M(x) ∈ Rk1×···×kL of a linear tensor network (6), there

exist a full column rank matrix S ∈ Cm×d (d ≤ m ≤ minl kl) and matrices

U1 ∈ Ck1×m, . . . ,UL ∈ CkL×m such that UH
l Ul = Im for all l ∈ [L

]
, and the

data tensor M(x) can be written as

M(x) =
m∑
j=1

[Sx ]j
(

[U1]·,j ⊗ [U2]·,j ⊗ · · · ⊗ [UL]∗,j

)
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Theorem 2

Theorem 2

Suppose a linear tensor network satisfies Assumption 1. If there exists λ > 0

such that the initial directions v̄1, . . . , v̄L of the network parameters satisfy∣∣∣[UT
` v̄l
]
j

∣∣∣2 − ∣∣∣[UT
L v̄L
]
j

∣∣∣2 ≥ λ for all l ∈ [L− 1] and j ∈ [m], then β(Θ(t))

converges in a direction that aligns with STρ∞, where ρ∞ ∈ Cm denotes a

stationary point of the following optimization problem

minimizeρ∈Cm ‖ρ‖2/L subject to yixT
i STρ ≥ 1, ∀i ∈ [n]
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Theorem 2

I The gradient flow finds sparse ρ∞ that minimizes the `2/L norm in the

"singular value space," where the data points xi are transformed into

vectors Sxi consisting of singular values of M (xi ).

I Also, the proof of Theorem 2 reveals that in case of L = 2, the parameters

vl(t) in fact converge to the top singular vectors of the data tensor

M
(
−XT r

)
;

I Compared to Theorem 1. we have a more complete characterization of

"which" singular vectors to converge to.
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Corollary 2

Corollary 2

Consider an L -layer linear diagonal network. If there exists λ > 0 such that the

initial directions w̄1, . . . , w̄L of the network parameters satisfy [w̄l ]
2
j − [w̄L]2j ≥ λ

for all l ∈ [L− 1] and j ∈ [d ], then βdiag (Θdiag (t)) converges in a direction

that aligns with a stationary point z∞ of

minimizez∈Rd ‖z‖2/L subject to yixT
i z ≥ 1,∀i ∈ [n]
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Corollary 3 (cf. Gunasekar et al., 2018b)

Corollary 3

Consider an L-layer linear full-length convolutional network. If there exists λ > 0

such that the initial directions w̄1, . . . , w̄L of the network parameters satisfy∣∣∣[Fw̄ `]j

∣∣∣2− ∣∣∣[Fw̄L]j

∣∣∣2 ≥ λ for all ` ∈ [L− 1] and j ∈ [d ], then βconv (Θconv (t))

converges in a direction that aligns with a stationary point z∞ of

minimizez∈Rd ‖Fz‖2/L subject to yixT
i z ≥ 1, ∀i ∈ [n].

where F ∈ Cd×d to be the matrix of discrete Fourier transform basis

[F ]j,k = 1√
d

exp
(
−
√
−1·2π(j−1)(k−1)

d

)
.
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Corollary 3

I For full-length convolution networks(k1 = · · · = kL = d) satisfy

Assumption 1.

I S = d
L−1
2 and U1 = · · · = UL = F ∗
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Theorem 3

Theorem 3

Suppose we have a 2-layer linear tensor network and a single data point (x , y).

Consider the compact SVD M(x) = U1 diag(s)UT
2 , where

U1 ∈ Rk1×m,U2 ∈ Rk2×m, and s ∈ Rm for m ≤ min {k1, k2} .

Let ρ∞ ∈ Rm be a solution of the following optimization problem

minimizeρ∈Rm ‖ρ‖1 subject to ysTρ ≥ 1

Assume that there exists λ > 0 such that the initial directions v̄1, v̄2 of the

network parameters satisfy
[
UT

1 v1
]2
j
−
[
UT

2 v2
]2
j
≥ λ for all j ∈ [m]. Then, v1

and v2 converge in direction to U1η
∞
1 and U2η

∞
2 , where

|η∞1 | = |η∞2 | = |ρ∞|�1/2, and sign (η∞1 ) = sign(y)� sign (η∞2 ) .
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Underdetermined regression

I Due to the fact that the parameters diverge to infinity in separable

classification problems, so that the initialization becomes unimportant in

the limit.

I This is not the case in regression setting.

I w`(0) = αw̄` for ` ∈ [L− 1] and wL(0) = 0.
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Lemma 4

I To define norm like function, We use the following lemma on a relevant

system of ODEs:

Lemma 4

Consider the system of ODEs, where p, q : R→ R :

ṗ = pL−2q, q̇ = pL−1, p(0) = 1, q(0) = 0.

Then, the solutions pL(t) and qL(t) are continuous on their maximal interval of

existence of the form (−c, c) ⊂ R for some c ∈ (0,∞].

Define hL(t) = pL(t)L−1qL(t); then, hL(t) is odd and strictly increasing,

satisfying limt↑c hL(t) =∞ and limt↓−c hL(t) = −∞.
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Theorem 5

Theorem 5

Suppose a linear tensor network satisfies Assumption 1. Assume further that

the matrices U1, . . . ,UL and S from Assumption 1 are all real matrices. For

some λ > 0, choose any vector η̄ ∈ Rm satisfying [η̄]2j ≥ λ for all j ∈ [m], and

choose initial directions v̄` = U`η̄ for ` ∈ [L− 1] and v̄L = 0. Then, the linear

coefficients β(Θ(t)) converge to STρ∞, where ρ∞ is the solution of

minimizeρ∈Rm QL,α,η̄(ρ) := α2
m∑
j=1

[η̄]2j HL

(
[ρ]j

αL |η̄j |L

)
subject to XSTρ = y

where QL,α,η̄ : Rm → R is a norm-like function defined using

HL(t) :=
∫ t

0 h−1
L (τ)dτ.
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Theorem 5

I QL,α,η̄(ρ) := α2∑m
j=1[η̄]2j HL

(
[ρ]j

αL|η̄j |L
)

I QL,α,η̄(ρ) interpolates between the weighted `1 and weighted `2 norm of ρ

I HL(t):

– grows like the absolute value function if t is large.

– grows like a quadratic function if t is close to zero.
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Corollary 5 (cf. Woodworth et al., 2018b)

Corollary 5

Consider an L -layer linear diagonal network. For some λ > 0, choose any

vector w̄ ∈ Rd satisfying [w̄ ]2j ≥ λ for all j ∈ [d ], and choose initial directions

w̄l = w̄ for l ∈ [L− 1] and w̄L = 0. Then, the linear coefficients

βdiag (Θdiag (t)) converge to the solution z∞ of

minimizez∈Rd QL,α,w (z) := α2
d∑

j=1

[w ]2j HL

(
[z ]j

αL |[w ]j |L

)
subject to Xz = y
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Corollary 6

Corollary 6

Consider an L-layer linear full-length convolutional network. Assume that the

data points {xi}ni=1 are all even. For some λ > 0, choose any even vector w̄

satisfying [Fw̄ ]2j ≥ λ for all j ∈ [d ], and choose initial directions w̄l = w̄ for

l ∈ [L− 1] and w̄L = 0. Then, the linear coefficients βconv (Θconv (t)) converge

to the solution z∞ of

minimize
z∈Rd , even

QL,α,Fw (Fz) := α2
d∑

j=1

[Fw ]2j HL

(
[Fz ]j

αL |[Fw ]j |L

)
subject to Xz = y
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Theorem 6

Theorem 6

Suppose we have a 2-layer linear tensor network and a single data point (x , y).

Consider the compact SVDM(x) = U1 diag(s)UT
2 , where

U1 ∈ Rk1×m,U2 ∈ Rk2×m, and s ∈ Rm for m ≤ min {k1, k2} . Assume that

there exists λ > 0 such that the initial directions v̄1, v̄2 of the network

parameters satisfy
[
UT

1 v1
]2
j
−
[
UT

2 v2
]2
j
≥ λ for all j ∈ [m]. Then, gradient flow

converges to a global minimizer of the loss L, and v1(t) and v2(t) converge to

the limit points:

v∞1 = αU1

(
UT

1 v1 � cosh
(
g−1

( y

α2

)
s
)

+ UT
2 v2 � sinh

(
g−1

( y

α2

)
s
))

+ α
(
I k1 − U1UT

1

)
v1

v∞1 = αU2

(
UT

1 v1 � cosh
(
g−1

( y

α2

)
s
)

+ UT
2 v2 � sinh

(
g−1

( y

α2

)
s
))

+ α
(
I k2 − U2UT

2

)
v2

where g−1 is the inverse of the following strictly increasing function

g(ν) =
∑m

j=1[s]j

(
[UT

1 v̄1]2
j

+[UT
2 v̄2]2

j

2 sinh (2[s]jν) +
[
UT

1 v̄1
]
j

[
UT

2 v̄2
]
j
cosh (2[s]jν)

)
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The end

The End
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