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Introduction

• Implicit bias of gradient methods
• Lyu and Li (2019): homogeneous neural networks the training

trajectory converges in direction to a critical point of some
nonconvex max-margin problem

• Improve this result for the two-layer case: characterize the
learnt classifier as the solution of a convex max-margin
problem
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Introduction

• Dynamics of infinitely-wide neural networks
• Describe the training dynamics by a Wasserstein gradient flow
• Chizat and Bach (2018): convex loss, diverse-enough

initialization, convergent gradient flow → its limit is a global
minimizer

• This paper includes the cases when the gradient flow diverges
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Notation

• M(Rp): set of nonnegative finite Borel measures on Rp

• P2(Rp): set of probability measures with finite second moment

• ∆m−1 =
{
p ∈ Rm

+; 1ᵀp = 1
}
: simplex
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2-homogeneous neural networks

• Binary calssification with a training set (xi , yi )i∈[n] with
xi ∈ Rd and yi ∈ {−1,+1}

hm(w , x) =
1
m

m∑
j=1

φ(wj , x) (1)

• m: number of units, w = (wj)j∈[m]: trainable parameters

• This setting covers two-layer neural networks where m is the
size of the hidden layer
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2-homogeneous neural networks

• Focus on the case where φ is 2-homogeneous and balanced

• (A1) The function φ is 2-homogeneous in its first variable,
i.e., φ(rw , x) = r2φ(w , x) and it is balanced, i.e. ∃T s.t.
φ(T (θ), ·) = −φ(θ, ·)
• Ex) ReLU, S-ReLU
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Parameterizing with a measure

h(µ, x) =

∫
Rp

φ(w , x)dµ(w) (2)

• Finite width networks as in Eq.(1) are recovered when µ is a
discrete measure with m atoms
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Parameterizing with a measure

• Eq.(2) can be reduced to a convex neural network
parameterized by an unnormalized measure∫

Sp−1
φ(θ)d [Π2(µ)] (θ) =

∫
Rp

‖w‖2φ(w/‖w‖)dµ(w) (3)
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Max-margins and functional norms

• Margin of a predictor f : mini∈[n]yi f (xi )

• Variation norm
• F1: space of functions that can be written as

f (x) =
∫
Sp−1 φ(θ, x)dν(θ)

• Infimum of ν(Sp−1) over all such decompositions defines a
norm: variation norm on F1

• RKHS norm
• F2: space of functions of the form

f (x) =
∫
Sp−1 σ(b + cᵀx)g(b, c)dτ(b, c) for some

square-integrable function g ∈ L2(τ)
• Infimum of ‖g‖L2(τ) = (

∫
|g(b, c)|2dτ(b, c))

1
2 defines a norm
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Max-margins and functional norms

• F1 max-margin classifier

γ1 := max
ν∈M+(Sp−1),ν(Sp−1)≤1

min
i∈[n]

yi

∫
Sp−1

φ(θ, x)dν(θ) (4)

• F2 max-margin classifier

γ2 := max
‖g‖L2(τ)≤1

min
i∈[n]

yi

∫
Sp−1

σ(b + cᵀxi )g(b, c)dτ(b, c) (5)
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Training dynamics in the infinite width limit

• Given a loss l , define the empirical risk associated to a
predictor hm as 1

n

∑n
i=1 l(−yihm(w , xi ))

• (A2) The loss l is differentiable with a locally
Lipschitz-continuous gradient. It has an exponential tail, it is
strictly increasing and there exists c > 0 such that l ′(u) ≥ c

for u ≥ 0

• Ex) logistic loss: l(u) = log(1 + eu), exponential loss:
l(u) = eu

• (A3) The family (φ(·, xi ))i∈[n] is linearly independent and for
i ∈ [n], the function φ(·, xi ) is differentiable with a
Lipschitz-continuous gradient and subanalytic
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Gradient flow of the smooth-margin objective

• Consider maximizing minus the log of the empirical risk

S(u) = − log(
1
n

n∑
i=1

l(−ui )) (6)

• Objective function: Fm(w) = S(ĥm(w))

• ĥm(w) = (yihm(w , xi ))i∈[n]

d

dt
w(t) = m∇Fm(w(t)) (7)
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Wasserstein gradient flow

• Training dynamics: µt,m = 1
m

∑m
j=1 δwj (t) in P2(Rp)

• F (µ) = S(ĥ(µ)): functional on P2(Rp)

• ĥ(µ) = (yih(µ, xi ))i∈[n]

• F ′µ(w) =
∑n

i=1 yiφ(w , xi )∇iS(ĥ(µ))
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Wasserstein gradient flow

Definition (Wasserstein gradient flow)
A Wasserstein gradient flow for the functional F is a path (µt)t≥0

such that there exists a flow X : R+ × Rp → Rp satisfying
µt = (Xt)#µ0 (where Xt(·) = X (t, ·)), X (0, ·) = X0 = idRp and for
all (t,w) ∈ R+ × Rp,

d

dt
X (t,w) = ∇Fµt (X (t,w))
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Infinite width limit of training

Theorem (Infinite width limit of training)
Under (A1− 3), if the sequence (wj(0))j∈N∗ is such that µ0,m

converges in P2(Rp) to µ0, then µt,m converges in P2(Rp) to the
unique Wasserstein gradient flow of F starting from µ0. The
convergence is uniform on bounded time intervals.
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Implicit bias of gradient flow

Theorem (Implicit bias)
Under (A1− 3), assume that Π2(µ0) has full support on Sp−1. If
∇S(ĥ(µt)) converges and ν̄t = Π2(µt)/([Π2(µt)] (Sp−1))

converges weakly to some ν̄∞, then this limit ν̄∞ is a maximizer for
the F1-max margin problem in Eq. (4)
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Observations

• Limit ν̄∞ of a non-convex dynamics is a global minimizer of
Eq. (4)

• Convergence of ∇S(ĥ(µt)) and ν̄t is an open question

• Unlike in the convex case, the dynamics does not completely
forget where it started from
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Training finite width neural networks

Corollary
Under the assumptions of Theorem 3, assume that the sequence
(wj(0))j∈N∗ is such that µ0,m converges in P2(Rp) to µ0. Then,
denoting ν̄m,t = Π2(µm,t)/ [Π2(µm,t)] (Sp−1), it holds

lim
m,t→∞

(min
i∈[n]

yi

∫
φ(θ, xi )d ν̄m,t) = γ1
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Insights on the convergence rate and choice of step-size

• Simplified dynamics: wj(t) = rj(t)θj , where rj(t) is trained and
θj is fixed at init

Fm(r) = −log(
1
n

n∑
i=1

exp(− 1
m

m∑
j=1

zi ,j r
2
j ))

• zi ,j = yiφ(θj , xi ): signed fixed features

• l = exp: exponential loss
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Insights on the convergence rate and choice of step-size

• Gradient ascent dynamics with initialization r(0) and sequence
of step-sizes (η(t))t∈N

r(t + 1) = r(t) + η(t)m∇Fm(r(t))

• It is shown to converge to a max l1-margin classifier without a
rate
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Insights on the convergence rate and choice of step-size

Proposition
Let aj(t) = rj(t)2/m for j ∈ [m], β(t) = ‖a(t)‖1 and
ā(t) = a(t)/β(t). For the step-sizes η(t) = 1/(16‖z‖∞

√
t + 1)

and a uniform initialization r(0) ∝ 1, it holds

max
0≤s≤t−1

min
i∈[n]

zᵀi ā(s) ≥ γ(m)
1 −‖z‖∞√

t
(8log(m)+log(t)+1)−4Blog(n)√

(t)

where γ(m)
1 := maxa∈∆m−1 mini∈[n] z

ᵀ
i a and some B ≤ ∞ when

γ
(m)
1 > 0

• Convergence of the best iterate to maximizers at an
asymptotic rate log(t)/

√
(t)
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Training only the ouput layer

• Input layer being initialized randomly and fixed

F (r) = −log(
1
n

n∑
i=1

)exp(− 1
m

m∑
j=1

zi ,j rj)

• zi ,j = yiσ(bj + xᵀi cj): signed output of neuron j for the
training point i

• σ: non-linearity such as ReLU
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Training only the ouput layer

• Gradient ascent dynamics with initialization r(0) and sequence
of step-sizes (η(t))t∈N

r(t + 1) = r(t) + η(t)m∇Fm(r(t))

• It is shown to converge in O(log(t)/sqrtt) to a l2 max-margin
classifier, for a step-size of order 1/

√
t

28



Training only the ouput layer

Proposition
Let a(t) = r(t)/m, β(t) = max

{
1,max0≤s≤t

√
m‖a(t)‖2

}
and

ā(t) = a(t)/β(t). Assume γ(m)
2 := max√m‖a‖2≤1 mini∈[n] z

ᵀ
i a > 0.

For the step-sizes η(t) = β(t)
√
2/(‖z‖∞

√
t + 1) and initialization

r(0) = 0, it holds

max
0≤s≤t−1

min
i∈[n]

zᵀi ā(s) ≥ γ(m)
s − ‖z‖∞√

t
(2
√
2 +

√
3log(n)

γ
(m)
2

)
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Dimension independent generalization bounds

• projected inter class distance:

∆r (Sn) := sup
P

{
inf

yi 6=yi′
‖P(xi )− P(xi ′)‖2; rank − r

}
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Dimesion independent generalization bounds

Theorem (Generalization bound)
For any ε ∈ (0, 1) and r ∈ [d ], there exist C (r),Cε(r > 0) such
that the following holds. If (x , y) ∼ P is such that for some R > 0
and ∆r (P) ≤ C (r), it holds ∆r (Sn) ≤ ∆r (P) and ‖x‖2 ≤ R almost
surely, then it holds with probability at least 1− δ over the choice
of i.i.d. samples Sn, for f the F1-max margin classifier on Sn,

P [yf (x) < 0] ≤ Cε(r)√
n

(
R

∆r (P)
)

r+3
2−ε +

√
log(B)

n
+

√
log(1/δ)

2n

where B some constant. The same bound applies to the F2-max
margin classifier for r = d
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Conclusion

• For wide two-layer ReLU neural networks, training both layers
or only the ouput layer leads to very different implicit biases

• When training both, the classifier converges to a max-margin
classifier for a non-Hilbertian norm

• This problem does not seem to be directly solvable with know
convex methods in high dimension
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