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Implicit bias in Over-Parametrized models

• In many machine learning problems, the model is highly
overparametrized
→ many possible parameters for which the training loss is zero

• Training algorithm (e.g Gradient descent) can provide "implicit
regularization" towards certain solutions over others

• The scale of the initialization α controls the transition between
the kernel and rich regimes
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The Scale of Initialization

• Model: f : Rp ×X → R
- Map parameters w ∈ Rp and examples x ∈ X to predictions
f (w , x) ∈ R

- Much of focus will be on models that are linear in x (not in w)
- D-homogeneous in w : F (c · w) = cDF (w) for all c > 0

• Squared loss: L(W ) =
∑N

n=1(f (w , xn)− yn)2

• Gradient descent/flow: ẇ(t) = −∇L(w(t))

• Scale of initialization: α ∈ (0,∞),wα,w0(0) = αw0
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The Kernel Regime

• Gradient flow depends on first-order approximation w.r.t. w

f (w , x) = f (w(t), x)+〈w−w(t),∇f (w(t), x)〉+O(‖w−w(t)‖2)

• Gradient flow operates on model as if it were an affine model
with feature map corresponding to tangent kernel

• Minimizing the loss of affine model reaches the solution
nearest to the initialization where distance is measured w.r.t.
the RKHS norm

• When does kernel regime happen?
- "Width" →∞ leads to kernel regime
- "Scale of initialization" →∞ leads to kernel regime
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The Rich Regime

• Other studies have shown very different implicit biases
• Matrix factorization with commutative measurements and
α→ 0 leads to implicit nuclear norm regularization

• Deep linear convolutional networks → implicit L2/depth

regularization in frequency domain
• Infinite-width, depth-2 ReLU networks with infinitesimal weight

decay→ minimizes
∫
|f “(w , x)|dx second order total variations

• These are not Hilbert norms, and cannot be captured by any
kernel
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The Transition Regime

• Kernel regime: α→∞
• Rich regime: α→ 0

• Transition regime: finite α (i.e. the regime in which models are
actually trained)

7



Table of Contents

1 Introduction

2 Simple 2-Homogeneous Model

3 D-Homogeneous Models

8



Simple 2-Homogeneous Model

• Diagonal linear neural network
- linear model with unusual parametrization
- f (w , x) =

∑d
i=1(w2

+,i − w2
−,i )xi = 〈βw , x〉

• Trained with gradient flow to minimize sqare loss
- β∞α := lim

t→∞
(w2

+(t)− w2
−(t)) when w+(0) = w−(0) = αw0
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The Implicit Bias and the Scale of Initialization

• lim
α→∞

β∞α = argminβ ‖β‖2 s.t. L(β) = 0

• lim
α→0

β∞α = argminβ ‖β‖1 s.t. L(β) = 0

• Theorem: for any α ∈ (0,∞) if the gradient flow solution
β∞α,w0

satisfies Xβ∞α,w0
= y , then

β∞α,w0
= argmin

β
Qα,w0(β) s.t. L(β) = 0

where Qα,w0(β) =
∑d

i=1 α
2w2

0,iq

(
βi

α2w2
0,i

)
and q(z) = 2−

√
4 + z2 + z arcsinh

(
z
2

)
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Example: Sparse regression

• yn ∼ N(〈β∗, xn〉, 0.01) for r∗-sparse β∗ with non-zero entries
• N = Ω(r∗ log d) samples suffice for β∗`1 to generalize well
• N = Ω(d) samples needed for kernel regime solution β∗`2 to

generalize
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D-Homogeneous Models

• FD(w) = βw ,D = WD
+ −WD

− and fD(w , x) = 〈wD
+ − wD

− , x〉
• Theorem: For any α ∈ (0,∞) and D ≥ 3, if Xβ∞α,D , then

β∞α,D = argmin
β

Qα,D(β) s.t. L(β) = 0

where QD
α (β) = αD

∑d
i=1 qD

(
βi
αD

)
and qD =

∫
h−1
D for hD(z) = (1− z)−

D
D−2 − (1 + Z )−

D
D−2 /
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D-Homogeneous Models
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Q&A
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