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Implicit bias in Over-Parametrized models

® |n many machine learning problems, the model is highly
overparametrized
— many possible parameters for which the training loss is zero

® Training algorithm (e.g Gradient descent) can provide "implicit
regularization" towards certain solutions over others

® The scale of the initialization « controls the transition between

the kernel and rich regimes



The Scale of Initialization

® Model: f:RP x X - R

- Map parameters w € RP and examples x € X to predictions
f(w,x) eR

- Much of focus will be on models that are linear in x (not in w)
- D-homogeneous in w: F(c-w) = cPF(w) for all ¢ >0

e Squared loss: L(W) = SN (f(w, x,) — yn)?
® Gradient descent/flow: w(t) = —VL(w(t))

® Scale of initialization: o € (0, 00), Wa e (0) = awg



The Kernel Regime

e Gradient flow depends on first-order approximation w.r.t. w
F(w,x) = f(w(t), x)+H{w—w(t), VF(w(t),x))+O0(llw—w(t)|?)

e Gradient flow operates on model as if it were an affine model

with feature map corresponding to tangent kernel

® Minimizing the loss of affine model reaches the solution
nearest to the initialization where distance is measured w.r.t.
the RKHS norm

® When does kernel regime happen?

- "Width" — oo leads to kernel regime
- "Scale of initialization" — oo leads to kernel regime



The Rich Regime

e QOther studies have shown very different implicit biases
® Matrix factorization with commutative measurements and
« — 0 leads to implicit nuclear norm regularization
® Deep linear convolutional networks — implicit Ly gepth
regularization in frequency domain
® |nfinite-width, depth-2 RelLU networks with infinitesimal weight
decay — minimizes [ |f“(w, x)|dx second order total variations

® These are not Hilbert norms, and cannot be captured by any

kernel



The Transition Regime

® Kernel regime: a — oo
® Rich regime: o — 0

® Transition regime: finite « (i.e. the regime in which models are

actually trained)
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Simple 2-Homogeneous Model

® Diagonal linear neural network

- linear model with unusual parametrization
d
- f(w,x) = Zi:l(w?hi - WE.,/)X:' = (Bw,X)

® Trained with gradient flow to minimize sqare loss

- B = tln;o(wﬁ(t) — w2 (t)) when w, (0) = w_(0) = aw



The Implicit Bias and the Scale of Initialization

. Ii_>m B> = argming ||B]]2 s.t. L(B) =0
® lim 35° = argming || 3|1 s.t. L(B) =0
a—0
® Theorem: for any a € (0, 00) if the gradient flow solution

o satisfies X8%°, =y, then

a,wp a,wp

Cwo = argmin Qu.uo(B) s.t. L(B) =0
8

i
2
Wo.i

and q(z) =2 — V4 + 22 + zarcsinh (5)

where Qu,uo(8) = 27:1 0‘2W§,iq <o¢26>
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Example: Sparse regression

® vy, ~ N((5* xpn),0.01) for r*-sparse * with non-zero entries
® N = Q(r*logd) samples suffice for 3 to generalize well
® N = Q(d) samples needed for kernel regime solution 3; to
generalize

(a) Generalization (b) Norms of solution (c) Sample complexity

Figure 1: In (a) the population error of the gradient flow solution vs. a in the sparse regression
problem described in Section 4. In (b), we plot [|8% [l — (18, in blue and [|85% [l —
B2, ]|z in red vs. a. In (c), the largest a such that 85°, achieves population error at most
0.025 is shown. The dashed line indicates the number of samples needed by 37 .
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D-Homogeneous Models

® Fp(w)=Bwp=WP - WP and fp(w,x) = (wP — wP, x)

® Theorem: For any a € (0,00) and D > 3, if Xﬁ(‘f , then
a.p = argmin Quo,p(B)s.t.L(8) =0
B

where Q2(3) = aP 27:1 ao (%)
and gp = j hBl for hp(z) = (1 — 2)7% —(1+ Z)f% /

13



D-Homogeneous Models

(a) Regularizer (b) Approximation ratio  (c) Sparse regression simulation

Figure 3: (a) gp(z) for several values of D. (b) The ratio 55%5% as a function of a, where

er = [1,0,0,...,0] is the first standard basis vector and 15 = [1,1,...,1] is the all ones
vector in RY. This captures the transition between approximating the £, norm (where the
ratio is 1) and the £, norm (where the ratio is 1/+/d). (¢) A sparse regression simulation
as in Figure 1, using different order models. The y-axis is the largest o (the scale of
3 at itialization) that leads to recovery of the planted predictor to accuracy 0.025.
The vertical dashed line indicates the number of samples needed in order for 3 to

approximate the plant.
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