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Necessities

I Neural Network success on Computer vision / Speech recognition /

Language processing

I These has accompanied by a significant increase in the computation and

parameter storage costs

I Overparameterization has been shown to benefit both the optimization

and generalization of neural networks.
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Necessities

I resource-constrained environments

– Mobile devices, wearable devices, IoT

– Reducing the storage footprint

– Reducing the computation cost of inference

– Reducing the energy requirements of inference(battery constrained devises)

I Compression methods indicates the existence of compact network
parameter configurations.

– Better generalization bound

– Alternative training methods might exist to discover and train compact

networks directly.

I (Fewer training examples required)
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Fomulate problem settings

I Given a dataset D = {(xi , yi )}ni=1 and a desired sparsity level κ

min
θ

L(θ;D) = min
θ

1
n

n∑
i=1

` (f (xi ; θ) , yi ) ,

s.t. θ ∈ Rp, ‖θ‖0 ≤ κ.

I With auxiliary indicator variables m = {0, 1}p (connectivity/mask/gate)

min
m,θ

L(m� θ;D) = min
m,θ

1
n

n∑
i=1

` (f (xi ;m� θ) , yi ) ,

s.t. w ∈ Rp, m ∈ {0, 1}p, ‖m‖0 ≤ κ,
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Measures/Evaluation metrics

I Sparsity, Nonzero rate

I FLOPS

– # of parameters: FC > Conv-layers

– FLOPS drop by pruning parameters: FC < Conv-layers

I A trade-off between model quality and efficiency.

– A family of models corresponding to different points on the

efficiency-quality curve

I Most paper report changes of accuracy in multiple efficiency points
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Methods

I 1. Compression

I 2. Sparsity constrain/regularization

I 3. Sparse Bayesian Learning

I 4. Dynamic sparse training

I 5. Others (Qunatization / Binarization) / (Weight sharing) /

(Knowledge distillation) / (Specialized structure)
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1. Compression

I It consists of three steps:

1. Training

2. Pruning

3. Fine-tuning

I Heuristically designed pruning schedules depending on the dataset and

architecture dependence.
I (LeCun et al., 1990) / (HASSIBI, 1993) / (Han et al., 2015a) / (Li et al., 2016)/

(Frankle and Carbin, 2018) / (Liu et al., 2018) / (Lee et al., 2018) / (Wang et al., 2019)

/ (Wang et al., 2020)
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1. Compression

I Training

– Pre-train

I Pruning

– Importance / saliency measures

– Pruning units (unstructure / structure)

– Single shot (one shot) / iterative

– Locally / Globally

– Retain / Reinitialize / Reinitial

I Fine-tuning
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Papers; Magnitude

I SongHan (Han et al., 2015a)1 / Lottery (Frankle and Carbin, 2018)2 / Rethinking (Liu

et al., 2018) 3 / (Efficient convs (Li et al., 2016)) 4

I The importance of each weight is measured by its magnitude (|θ|).
I The main difference is

– Retain (Han et al., 2015a)

– Rewind (Frankle and Carbin, 2018)

– Reinitialize (Liu et al., 2018)

I Pre-train, unstructured, locally, iteratively.

1Learning Both weights and Connections for Efficient Neural Networks.
2The Lottery Tickey Hypothesis Finding Sparse, Trainable Neural Networks.
3Rethinking the value of Network Pruning.
4Pruning Filters for Efficient Convnets
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Papers; Hessian based / Loss preserving

I Loss preserving

∆L =
∂L>

∂θ
∆θ︸ ︷︷ ︸

≈0

+
1
2

∆θ>H∆θ +O
(
‖∆θ‖3

)
I ∆θ = −θq
I OBD (LeCun et al., 1990)5 /OBS (HASSIBI, 1993)6 /EigenDamge (Wang et al., 2019) 7

5Optimal Brain Damage
6Second Order Derivatives for Network Pruning, Optimal Brain Surgeon.
7EigenDamage, Structured Prunning in the Kronecker-Factored Eigenbasis
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Papers; Hessian based / Loss preserving

I In OBD

∆θq = −θ∗q and ∆LOBD =
1
2
(
θ∗q
)2 Hqq

In OBS, the importance of each weight is calculated by solving the

following constrained optimization problem:

min
q

{
min
∆θ

1
2

∆θ>H∆θ s.t. e>q ∆θ + θ∗q = 0
}

I OBD: ∆LOBD = 1
2

(
θ∗q
)2 Hqq / OBS: ∆LOBS = 1

2
(θ∗q )2

[H−1]
qq

I OBD has diagonal assumption on Hessian matrix.

I OBS does not require fine-tunnig after pruning.

I Pre-train, unstructured, globally, iteratively/one-shot).
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Papers; Hessian based / Loss preserving

I EigenDamage (Wang et al., 2019)

I They propose Kron-OBD, Kron-OBS and EigenDamage

I Kron-OBD, Kron-OBS extend OBS, OBD to filterwise pruning

I Take into account the correlation of the weights within the same filter

∆Lj =
1
2
F l

j
∗>Hl(j)F l

j
∗

where F l
j
∗ ∈ Rcin k2

and Hl(j) ∈ Rcin k2×cin k2

I Kron-OBS considers the correlation between filters.
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Papers; Hessian based / Loss preserving

I It cannot be applied for large convolutional layers, they adopt K-FAC

approximation.

I F = S⊗ A where A = E
[
aa>

]
and S = E

[
{∇sL} {∇sL}>

]
,

I Kron-OBD

∆F l
j
∗ = −F l

j
∗ and ∆Lj =

1
2
SjjF

l
j
∗>AF l

j
∗

I Kron-OBS

∆F l
j
∗ = −

S−1ej ⊗ F l
j
∗

[S−1]ii
and ∆Lj =

1
2
F l
j
∗>AF l

j
∗

[S−1]jj

I Pre-train, structured, locally, iteratively.
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Papers; Hessian based / Loss preserving

I EigenDamage, Decorrelate the weights before pruning.

I Hessian matrix is closer to diagonal in the KFE, we can apply OBD with

less cost to prediction accuracy.
I Low-rank decomposition. ((Lebedev et al., 2015)8/ (Jaderberg et al., 2014)9/

(Denton et al., 2014)10)

8Speeding-up Convolutional Neural Networks Using Fine-tuned CP-Decomposition
9Speeding up Convolutional Neural Networks with Low Rank Expansions

10Exploiting Linear Structure Within Convolutional Networks for Efficient Evaluation
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Papers; train dynamics preserve, pre-train

I SNIP (Lee et al., 2018)11 / Grasp (Wang et al., 2020) 12 / Signal Propagation (Lee

et al., 2019) 13

I These methods does not need pre-training

I Prune parameters reserving train dynamics.

I Need not pre-train, unstructured, globally, one-shot

11SNIP, Single-Shot Network Pruining Based on Connection Sensitivity
12Picking Winning Tickets Before Training by Preserving Gradient Flow
13A Signal Propagation Perspective for Pruning Neural Networks at Initialization.

16/48



Papers; train dynamics preserve, pre-train

I For data dependency, they use gradient information.

I SNIP: S (θq) = limε→0

∣∣∣∣L(θ0)−L(θ0+εδq)
ε

∣∣∣∣ =
∣∣∣θq ∂L∂θq ∣∣∣

I Grasp:

S(δ) = ∆L (θ0 + δ)−∆L (θ0)︸ ︷︷ ︸
Const

= 2δ>∇2L (θ0)∇L (θ0) +O
(
‖δ‖22

)
= 2δ>Hg +O

(
‖δ‖22

)
,
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Papers; Structured pruning

I Efficient convs (Li et al., 2016)

I Importance of filters is defined the sum of weights in filters.

I For each filter Fi,j , calculate the sum of its absolute kernel weights

sj =
∑ni

l=1
∑
|Kl | Sort the filters by si

I Pre-train, structured, locally, iteratively
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2. Regularization

I Loss + model complexity.

I L0, L1(LASSO), L2,1(Group LASSO), L2 (Weight-decay)

I Regularization on weights / on structure related factor.
I (Tartaglione et al., 2018)14 / (Liu et al., 2017) / (Huang and Wang, 2018)15 / (Zhu

et al.)16/(Louizos et al., 2018) 17

14Learning Sparse Neural Networks via Sensitivity-Driven Regularization
15Data-Driven Sparse Structure Selection for Deep Neural Networks.
16Improving Deep Neural Network Sparsity through Decorrelation Regularization.
17Learning Sparse Neural Networks Through L0 Regularzation
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Papers; Group LASSO

I (Liu et al., 2017)

I Our approach impose L1 regularization on the scaling factors in batch

normalization layers.

I Training objective

1
n

n∑
i=1

`(f (xi ; θ), yi ) + λ
∑
γ

g(γ)

I BN

ẑ =
zin − µB√
σ2
B + ε

; zout = γẑ + β

I Global Threshold across all layers.

I Prune those channels with small factors and fine-tune the pruned network.
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Papers; Group LASSO

I (Huang and Wang, 2018)

I Introduce scaling factors which sacle the outputs of specific structure(e.g.

neurons, groups or blocks)

I Add sparsity regularizations on scaling factors.

I Try to enforce the output of the group zero.

I Better results without fine-tuning and multi-stage optimization

I Training objective

1
n

n∑
i=1

`(f (xi ; θ), yi ) + λ‖θ‖22 + Rs(γ)
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Papers; Group LASSO

I (Zhu et al.)

I Minimizing the filter corrleation during training.

I Training objective function

1
n

n∑
i=1

`(f (xi ; θ), yi ) + λ‖θ‖22 + η · RS + γ ·
L∑

l=1

R l
C

I Rs : group LASSO regularization for filter groups

I R l
C = 1∑

k M l
k

∥∥∥Ĉl − I
∥∥∥2

2
, where

∑
M l

K denotes number of unmasked filter

and Ĉl is the correlation matrix of the unmasked filters in layer l
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Papers; L2

I Sensitivity-Driven (Tartaglione et al., 2018)

I Gradually lowers the absolute value of parameters with low sensitivity.

I Eventually set to zero by simple thresholding.

I Sensitivity

S (y ,wn,i ) =
C∑

k=1

αk

∣∣∣∣ ∂yk∂wn,i

∣∣∣∣
I Insensitivity

S̄ (y,wn,i ) = 1− S (y,wn,i )

I A Bounded insensitivity

S̄b (y,wn,i ) = max
[
0, S̄ (y,wn,i )

]
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Papers; L2

I Update rule

w t
n,i := w t−1

n,i − η
∂L

∂w t−1
n,i

− λw t−1
n,i S̄b

(
y,w t−1

n,i

)
I Regularization

Rn,i (wn,i ) =
w2

n,i

2
S̄ (y,wn,i )

I If αk = 1
C

I Specific (data-driven)

S spec (y, y∗,wn,i ) =
C∑

k=1

y∗k

∣∣∣∣ ∂yk∂wn,i

∣∣∣∣
I Pruning with global threshold T .
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Papers; L0

I L0 (Louizos et al., 2018)

I Propose a general framework for surrogated L0 regularized objectives

I It is realized by smoothing the expected L0 regularized objectives with

continuous distributions.
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Papers; L0

I With auxiliary indicator variables m = {0, 1}p

min
m,θ

L(m� θ;D) = min
m,θ

(
1
n

n∑
i=1

` (f (xi ;m� θ) , yi ) + λ‖m‖0

)
,

s.t. w ∈ Rp, m ∈ {0, 1}p

I By letting q(mj |πj) = Ber(πj)

min
π,θ

(
Eq(m|π)

[
1
n

n∑
i=1

` (f (xi ;m� θ) , yi )

]
+ λ

p∑
j=1

πj

)
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Papers; L0

I A hard-sigmoid rectification of s

s ∼ q(s | φ)

m = min(1,max(0, s))

I Then with CDF Q,

min
φ,~θ

(
Eq(s|φ)

[
1
n

n∑
i=1

`
(
f
(
xi ; g(s)� ~θ

)
, yi
)]

+ λ

p∑
j=1

(1− Q(sj ≥ 0|φj))

)
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Papers; L0

I With the reparametrization trick,

min
φ,~θ

(
Ep(ε)

[
1
n

n∑
i=1

`
(
f
(
xi ; g(h(φ, ε))� ~θ

)
, yi
)]

+ λ

p∑
j=1

(1− Q(sj ≥ 0|φj))

)

I Monte Carlo approximation,

min
φ,~θ

(
1
L

L∑
l=1

(
1
n

n∑
i=1

`
(
f
(
xi ;m(l) � ~θ

)
, yi
))

+ λ

p∑
j=1

(1− Q(sj ≥ 0|φj))

)
,

= LE (θ̃, φ) + λLC (φ), where m(l) = g(h(φ, ε(l))) and ε(l) ∼ p(ε)
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3. Sparse Bayesian learning

I Sparse variational dropout (Molchanov et al., 2017)18

I The original version of dropout, ξmi ∼ Bernoulli(1− p)

I Gaussian Dropout with multiplicative continuous noise

ξmi ∼ N (1, α = p
1−p

)

I It is equivalent to sampling θij from q (θij | wij , α) = N
(
θij | wij , α

2
ij

)
.

I Use q (θij | wij , α) as an approximate posterior distribution

I The parameters (w , α) are tuned via stochastic variational inference.

18Variational Dropout Sparsifies Deep Neural Networks.
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3. Sparse Bayesian learning

I Original variational dropout paper only consider a ≤ 1.

I Extend it to the case, α > 1

I α→∞ corresponds to p → 1 which means it could be always dropped

from the model.

I Extended variational dropout leads to extremely sparse solutions both in

fully-connected and convolutional layers.

30/48



4. Dynamic sparse training

I Dynamically explore structures during training within sparsity constraint.

I Taking inspiration from the biological neural networks which have a sparse

topology.

I Naturally, it does not require pre-training

I Pruning methods dealt with previously could be called static sparse

training.

I (Mocanu et al., 2018)19 / (Bellec et al., 2018)20 / (Mostafa and Wang, 2019)21

19Scalable training of artificial neural networks with adaptive sparse connectivity inspired by

network science
20Deep Rewiring, Training Very Sparse Deep Networks
21Parameter Efficient Training of Deep Convolutional Neural Networks by Dynamic Sparse

Reparameterization.
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Papers; SET

I SET(Sparse Evolutionary Training) (Mocanu et al., 2018)

I With kth layer has nk neurons, matrix W k ∈ Rnk×nk−1

I ε is a parameter of SET controlling the sparsity level.

I The probability of a connection between the neuron hk
i and hk−1

j is

p(mk
ij = 1) =

ε(nk + nk−1)

nknk−1

I ε(nk + nk−1) numbers of weights is expected to be not zero in each layers.
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Papers; SET

1. Initialize a model

2. For each epoch after training:

2.1 remove a fraction ζ of the smallest positive weights(put θk = 0)

2.2 remove a fraction ζ of the largest positive weights(put θk = 0)

2.3 If it is not last training epoch, then add randomly(uniformly) chosen

weights.
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Papers; DEEP R

I DEEP R(Bellec et al., 2018)

I Training alogorithm that train direcly a sparse connected neural networks.

I DEEP R is differnt from standard GD in two respects

– When the absolute value of a weight is moved trough 0, it becomes θk = 0,

and randomly drawn other connection is tried out by the algorithm.

– It combines random walk in parameter space.
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Papers; DEEP R

1. Initialize a model

2. For each step in updating the model:

2.1 If θk > 0 then, θk ← θk − η ∂
∂θk

EX,Y∗ (θ)− ηα+
√
2ηTνk

2.2 After updating the parameters, if θk < 0, then remove the parameters, put

θk = 0)

2.3 Activate the same number of connections which removed during updating

the models
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Papers; Dynamic Sparse Reparametrization

I Dynamic Sparse Reparametrization (Mostafa and Wang, 2019)

I Differentialble represenation; Reparameterize original network by φ ∈ Φ

and ψ ∈ Ψ through θ = g(φ;ψ), where g is differentiable w.r.t. φ but not

necessarily w.r.t. ψ.

y = f (x ; g(φ;ψ)) , fψ(x ;φ)

I Sparse reparameterization is a special case where g is linear projection and

φ is the non-zero entries, ψ their indices

I If ψ is adjusted adaptively during training; dynamic reparametrization.
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Papers; Dynamic Sparse Reparametrization

I Differences from SET

– Adaptive threshold for pruning.

– Automatically reallocate parameters across layer during training.

1. Initialize a model

2. For each epoch after training:

2.1 Remove weights by a global theshold H

2.2 Adjust pruning threshold with the number of pruned weights K and

tolerance δ

2.3 remove a fraction ζ of the largest positive weights(put θk = 0)

2.4 If it is not last training epoch, then add randomly(uniformly) chosen

weights.

2.5 Reallocate parameters with the number of li
L
K in each layer, li is number of

non-zero weights in layer i
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Others

I Quantization

– (Han et al., 2015b)22

– Reduce the required

– With weight-shareing, reduce the number of bits required to represent

weight.

I Knowledge distillation

– (Hinton et al., 2015)23

I Specialized structure

– Hashnet (Chen et al., 2015)24

22Deep Compression, Compressing Deep Neural Network with Pruning, Trained

Quantization and huffman Coding
23Distilling the knowledge in a neural network
24compressing neural networks with the hashing trick
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5.others

I (Gale et al., 2019)25

– Comparing the methods, Magnitude based pruning / Variational dropout /

L0 regularization.

– Transformer with WMT 2014 English-to-German / Resnet50 with

ImageNetn

I (Zhou et al., 2019)26

– Investigate the lottery ticket’s principles

I (Paganini and Forde, 2020) 27

– Comparing magnitude pruning methods in details

– Importance measurs, locally/globlally, unstructured/sturctured,

rewind/reinitialize.

25The State of Sparsity in Deep Neural Networks.
26Deconstructing Lottery Tickets, Zeros, Signs, and the Supermask
27On Iterative Neural Network Pruning, Reinitialization, and The Similarity of Masks.
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6. Difficulties

I Review paper, (Blalock et al., 2020) 28

I Absence of benchmarks; datasets, measures, architectures.

– Few papers compare to another.

– No methods that have been shown to outperform all existing

"state-of-the-art" methods

– Papers report a wide variety of metrics and operating points

I Heuristically designed pruning schedules, architecture dependency.

– Methodologies are so inconsistent between papers.

– Methods from layer years do not consistently outperform methods from

earlier years

28What is the State of Neural Network Pruning
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