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Motivation

• 학습 이론에서, test err와 train err의 차이가 작을수록 generalize
성능이 좋다는 의미.

• Uniform convergence(UC) is the supremum of (test err - train err)
over a certain function class.

• ∴ UC is a powerful tool for understanding the generalization
performance of predictors.

• Bounds on uniform convergence는 일반적으로
√

complexity/n의
형태이므로 만약 tight하다면 function class가 복잡할수록 generalize
를 못 해야한다. (그러나 현실은 DNN도 generalize를 잘 한다.)

• Question : What is the exact gap between uniform convergence
and the actual generalization errors?
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Model setup

• Consider a dataset (xi , yi)i∈[n] with n samples.

• The covariates follow xi ∼i id Unif
(
Sd−1(

√
d)

)
.

• Responses satisfy yi = fd (xi) + εi .

• The noises satisfying εi ∼i id N
(
0, τ2

)
indep of (xi)i∈[n].

• The noisy setting
(
τ2 > 0

)
and noiseless setting

(
τ2 = 0

)
.

• Function class : Random features(RF) function class.
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Random features model

(Random features model) Let (θj)j∈[N] ∼i id Unif
(
Sd−1(

√
d)

)
be the

random feature vectors. Given an activation function σ : R→ R, we
define the random features function class FRF(Θ) by

FRF(Θ) ≡

fa(x) = N∑
j=1

ajσ
(
⟨x,θj⟩ /

√
d

)
: a ∈ RN


min

fa∈FRF(Θ)
R(fa) = min

a∈RN
R(a)

This function class is proper because it can be interpreted as a linearized
version of two layer neural networks.
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Generalization error

(Generalization error) We define population risk and the empirical risk
of a predictor a ∈ RN as

R(a) = Ex,y (y − fa(x))2

R̂n(a) =
1

n

n∑
i=1

(yi − fa(xi))
2

and the empirical risk minimizer with vanishing regularization as

amin = lim
λ→0+

argmin
a

[
R̂n(a) + λ∥a∥22

]
.

In the overparameterized regime (N > n), under mild conditions, we
have mina R̂n(a) = R̂n (amin) = 0. In this regime, amin can be
interpreted as the minimum ℓ2 norm interpolator.

⇒ R(amin) : Generalization error
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Uniform convergence bounds

(Uniform convergence bounds) We denote the uniform convergence
bound over a norm ball and the uniform convergence over interpolators
in the norm ball by

U(A,N, n, d) ≡ sup
(N/d)∥a∥22≤A

(
R(a)− R̂n(a)

)
T (A,N, n, d) ≡ sup

(N/d)∥a∥22≤A,R̂n(a)=0
R(a)

Note that we need A ≥ (N/d) ∥amin∥22 to satisfy
{a ∈ RN : (N/d)∥a∥22 ≤ A, R̂n(a) = 0} ≠ φ.

We want to quantify U(A), T (A), R(amin) (abuse of notation)
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Uniform convergence bounds and Generalization error

We want to quantify U(A), T (A), R(amin) (abuse of notation)

σ : Relu, (N, n, d) = (500, 300, 200)

U(A) ≥ T (A) ≥ R(amin) for any A ≥ (N/d) ∥amin∥22
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Asymptotic limit (d →∞)

We approach this problem in the limit d →∞ with N/d → ψ1(the
number of parameters) and n/d → ψ2(sample size). We further assume
the setting of a linear target function fd and a nonlinear activation
function σ.

In this regime, our main result Theorem 1 will show that,

U(A,N, n, d)
d→∞→ U (A,ψ1, ψ2) ,

T (A,N, n, d)
d→∞→ T (A,ψ1, ψ2) ,

and Theorem 1 of Mei & Montanari (2019) shows

(N/d) ∥amin∥22
d→∞→ A (ψ1, ψ2) ,

R (amin)
d→∞→ R (ψ1, ψ2) .
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Asymptotic limit (d →∞ + ψ1 →∞)

In the limit ψ1 →∞ after d →∞, we denote

U∞ (A,ψ2) ≡ lim
ψ1→∞

U (A,ψ1, ψ2)

T∞ (A,ψ2) ≡ lim
ψ1→∞

T (A,ψ1, ψ2)

A∞ (ψ2) ≡ lim
ψ1→∞

A (ψ1, ψ2)

R∞ (ψ2) ≡ lim
ψ1→∞

R (ψ1, ψ2)
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Asymptotic limit (substituting A)

In order for U and T to serve as proper bounds for R (amin), we need to
take at least A ≥ ψ1 ∥amin∥22. Therefore, we will choose
A = αψ1 ∥amin∥22 for some α > 1.

Define
U (α) (ψ1, ψ2) ≡ U (αA (ψ1, ψ2) , ψ1, ψ2) ,

T (α) (ψ1, ψ2) ≡ T (αA (ψ1, ψ2) , ψ1, ψ2) ,

and
U (α)∞ (ψ2) ≡ lim

ψ1→∞
U (α) (ψ1, ψ2) ,

T (α)∞ (ψ2) ≡ lim
ψ1→∞

T (α) (ψ1, ψ2) .
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Asymptotic power laws (d →∞ + A∞ + noiseless)

U (α)∞
(
ψ2; τ

2 = 0
)
∼ ψ−1/22

T (α)∞
(
ψ2; τ

2 = 0
)
∼ ψ−12

R(α)∞
(
ψ2; τ

2 = 0
)
∼ ψ−22
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Asymptotic power laws (d →∞ + A∞ + noisy)

U (α)∞
(
ψ2; τ

2
)
− τ2 ∼ ψ1/22

T (α)∞
(
ψ2; τ

2
)
− τ2 ∼ 1

R∞
(
ψ2; τ

2
)
− τ2 ∼ ψ−12

In the presence of label noise, the excess risk R∞ − τ2 vanishes in the
large sample limit. In contrast, the classical uniform convergence U∞
becomes vacuous, whereas the uniform convergence over interpolators
T∞ converges to a constant, which gives a non-vacuous bound of R∞.
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Asymptotic power laws (d →∞)

The inferred asymptotic law gives (c.f. Figure 4)

U (α) (ψ1, ψ2)− U (α)∞ (ψ2) ∼ ψ−11
T (α) (ψ1, ψ2)− T (α)∞ (ψ2) ∼ ψ−11
R (ψ1, ψ2)−R∞ (ψ2) ∼ ψ−11

Note that large ψ1 should be interpreted as the model being heavily
overparametrized (a large width network). This asymptotic power law
implies that, both uniform convergence bounds correctly predict the
decay of the test error with the increase of the number of features.
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Conclusion

• They focus on investigating uniform convergence bound(U),
uniform convergence bound over interpolators(T ) and
generalization error(R).

• The contribution of this paper is that they provide that the
asymptotic limit of U, T that can be calculated through proof.

• They conjecture asymptotic power laws using simulations(figure).

• Their results exhibit a setting in which standard uniform
convergence bound is vacuous while uniform convergence over
interpolators gives a non-trivial bound of the actual generalization
error.
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