Just interpolate: kernel "ridgeless" regression can generalize
 Tengyuan Liang and Alexander Rakhlin, AoS 2020

Kunwoong Kim

January 17, 2022

Introduction

- General least-square objective is

$$
\min _{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n}\left(f\left(x_{i}\right)-y_{i}\right)^{2}+\lambda\|f\|_{\mathcal{H}}^{2}
$$

where \mathcal{H} is the Hilbert space.

- The regularization parameter λ is a knob for balancing bias and variance.
- However, this paper shows that the test error decreases as λ decreases due to the implicit regularization using kernel based regression.
- Implicit regularization occurs by (1) the curvature of the kernel function and (2) data geometry for high-dimensional data.

Notations

Denote the true function as $f_{\star}(x)=\mathbf{E}(\mathbf{y} \mid \mathbf{x}=x)$.
The interpolation estimator studied in this paper is defined as

$$
\hat{f}=\underset{f \in \mathcal{H}}{\arg \min }\|f\|_{\mathcal{H}} \text { s.t. } f\left(x_{i}\right)=y_{i}, \forall i .
$$

When $K(X, X)$ is full rank, it is equivalent to

$$
\hat{f}(x)=K(x, X) K(X, X)^{-1} Y
$$

where $X=\left[x_{1}, \ldots, x_{n}\right]^{\top} \in \mathbb{R}^{n \times d}, Y=\left[y_{1}, \ldots, y_{n}\right]^{\top} \in \mathbb{R}^{n}$, $K(X, X)=\left[K\left(x_{i}, x_{j}\right)\right]_{i, j} \in \mathbb{R}^{n \times n}$, and, for a new x, we denote $K(x, X)=\left[K\left(x, x_{1}\right), \ldots, K\left(x, x_{n}\right)\right] \in \mathbb{R}^{1 \times n}$.

Key quantities

Denote $\Sigma_{d}=\mathbf{E}_{\mu}\left(x_{i} x_{i}^{\top}\right)$ the covariance matrix and the operator norm $\left\|\Sigma_{d}\right\|_{o p}$.

- We set the kernel function as

$$
K\left(x, x^{\prime}\right)=h\left(\frac{1}{d}\left\langle x, x^{\prime}\right\rangle\right)
$$

for some nonlinear smooth function $h(\cdot): \mathbb{R} \rightarrow \mathbb{R}$ in a neighborhood of 0 . Here, define

$$
\begin{gathered}
\alpha=h(0)+h^{\prime \prime}(0) \frac{\operatorname{Tr}\left(\Sigma_{d}^{2}\right)}{d} \\
\beta=h^{\prime}(0) \\
\gamma=h\left(\frac{\operatorname{Tr}\left(\Sigma_{d}\right)}{d}\right)-h(0)-h^{\prime}(0) \frac{\operatorname{Tr}\left(\Sigma_{d}\right)}{d}
\end{gathered}
$$

α, β, and γ are the quantities related to the curvature of $h(\cdot)$.

Main result

Assumptions

1. High dimensionality: $\exists c, C>0$ such that $c \leq d / n \leq C$.
$\left\|\Sigma_{d}\right\|_{o p} \leq 1$
2. $(8+\mathrm{m})$ moments: $\left.\mid\left(\Sigma_{d}\right)^{-1 / 2} x_{i}\right)_{j} \left\lvert\, \leq C d^{\frac{2}{8+m}}\right.$ for all $1 \leq j \leq d$ and some $m>0$.
3. Noise condition: $\exists \sigma>0$ such that $\mathbb{E}\left(\left(f_{\star}(\mathbf{x})-y\right)^{2} \mid \mathbf{x}=x\right) \leq \sigma^{2}$ for all x.
4. Nonlinear kernel: $K(x, x) \leq M$ for any x, where $K\left(x, x^{\prime}\right)=h\left(\frac{1}{d}\left\langle x, x^{\prime}\right\rangle\right)$.

Main result (Theorem 1)

$$
\begin{equation*}
\mathbb{E}_{Y \mid X}\left\|\hat{f}-f_{\star}\right\|^{2} \leq \phi_{n, d}\left(X, f_{\star}\right)+\epsilon(n, d) \tag{1}
\end{equation*}
$$

with probability at least $1-2 \delta-d^{-2}$ where

$$
\begin{align*}
\phi_{n, d}\left(X, f_{\star}\right) & =\mathbf{V}+\mathbf{B} \\
& =\frac{8 \sigma^{2}\left\|\Sigma_{d}\right\|_{o p}}{d} \sum_{j} \frac{\lambda_{j}\left(\frac{X X^{\top}}{d}+\frac{\alpha}{\beta} 11^{\top}\right)^{2}}{\left(\frac{\gamma}{\beta}+\lambda_{j}\left(\frac{X X^{\top}}{d}+\frac{\alpha}{\beta} 11^{\top}\right)\right)^{2}} \\
& +\left\|f_{\star}\right\|_{\mathcal{H}}^{2} \inf _{0 \leq k \leq n}\left(\frac{1}{n} \sum_{j>k} \lambda_{j}\left(\mathbf{K}_{X} \mathbf{K}_{X}^{\top}\right)+2 M \sqrt{\frac{k}{n}}\right) . \tag{2}
\end{align*}
$$

and $\epsilon(n, d)=\mathcal{O}\left(d^{-\frac{m}{8+m}} \log ^{4.1} d\right)+\mathcal{O}\left(n^{-\frac{1}{2}} \log ^{0.5}(n / \delta)\right)$.

Main result

Assume σ^{2} and $\left\|f_{\star}\right\|_{\mathcal{H}}^{2}$ are guessed.

Message

- V and B do not depend on λ (only depends on α, β, and γ.).
- V decreases (\hat{f} is generalized) as γ increases and when the data matrix enjoys certain decay of the eigenvalues.
- B decreases as the eigenvalue decay of K is fast.

Example: What if using linear kernel (i.e., $h(a)=a)$?

- Since $\gamma=0, \mathbf{V}$ becomes very large if $\lambda_{j}\left(\frac{X X^{\top}}{d}+\frac{\alpha}{\beta} 11^{\top}\right)$ are small. In contrast, curvature of h introduces implicit regularization through a nonzero γ.

Behavior of the data-dependent bound

Let $K\left(x, x^{\prime}\right)=\exp \left(\frac{2\left\|x-x^{\prime}\right\|}{d}\right)$ with $\mathbf{r}=\gamma / \beta \asymp\left(\frac{\operatorname{Tr}\left(\sum_{d}\right)}{d}\right)^{2}$.

- Case $n>d$. The bounds are

$$
\mathbf{V} \precsim \frac{1}{n} \sum_{j=1}^{d} \frac{\lambda_{j}\left(X X^{\top} / n\right)}{\left(\frac{d}{n} \mathbf{r}+\lambda_{j}\left(X X^{\top} / n\right)\right)^{2}}
$$

and

$$
\mathbf{B} \precsim \mathbf{r}+\frac{1}{d} \sum_{j=1}^{d} \lambda_{j}\left(X X^{\top} / n\right) .
$$

Here, \mathbf{r} controls the trade-off between \mathbf{V} and \mathbf{B}.

- Case $d>n$. The bounds are

$$
\mathbf{V} \precsim \frac{1}{d} \sum_{j=1}^{n} \frac{\lambda_{j}\left(X X^{\top} / d\right)}{\left(\mathbf{r}+\lambda_{j}\left(X X^{\top} / d\right)\right)^{2}}
$$

and

$$
\mathbf{B} \precsim \mathbf{r}+\frac{1}{n} \sum_{j=1}^{n} \lambda_{j}\left(X X^{\top} / d\right) .
$$

Confirmation of trade-off using synthetic data

- Parametrize the eigenvalues of covariance as $\lambda_{j}\left(\Sigma_{d}\right)=\left(1-((j-1) / d)^{\kappa}\right)^{1 / \kappa}$ where κ controls approximate "low-rankness" of the data: the closer κ is to 0 , the faster does the spectrum of the data decay.
- Use the RBF kernel $k\left(x, x^{\prime}\right)=\exp \left(-\left\|x-x^{\prime}\right\|^{2} / d\right)$.
- Target nonlinear function $f_{\star}(x)=\sum_{l=1}^{100} K\left(x, \theta_{l}\right)$ where $\theta_{l} \sim \mathcal{N}\left(0, I_{d}\right)$.
- Then, generate as $x_{i} \sim \mathcal{N}\left(0, \Sigma_{d, k}\right), y_{i}=f_{\star}\left(x_{i}\right)+\epsilon_{i}$ where $\epsilon_{i} \sim \mathcal{N}\left(0, \sigma^{2}\right)$ for some σ^{2}.
Small κ (fast spectral decay) \rightarrow Large V. Big κ (slow spectral decay) \rightarrow Large \mathbf{B}.

Examples

- $n>d$
(Low rank) $\Sigma_{d}=\operatorname{diag}(1, \ldots, 1,0, \ldots, 0)$ with ϵd ones. Then, $\mathbf{r}=\epsilon^{2}$ and $\lambda_{j}\left(X X^{\top} / n\right) \geq(1-\sqrt{\epsilon d / n})^{2}$ with high prob.
Then,

$$
\mathbf{V} \precsim \frac{d}{n} \epsilon \text { and } \mathbf{B} \precsim \epsilon^{2}+\epsilon .
$$

Thus $\mathbf{V}, \mathbf{B} \rightarrow 0$ as $\epsilon \rightarrow 0$ for $n>d$.

- $d>n$
(Favorable spectral decay) If $\mathbf{r}^{1 / 2}=\operatorname{Tr}\left(\Sigma_{d}\right) / d=\mathcal{O}\left((n / d)^{1 / 3}\right)$,

$$
\mathbf{V} \precsim \frac{n}{d} \frac{1}{4 \mathbf{r}} \text { and } \mathbf{B} \precsim \mathbf{r}^{1 / 2}
$$

thus $\mathbf{V}, \mathbf{B} \rightarrow 0$ for $d \gg n$.

Confirmation of trade-off using synthetic data $(n>d)$

Table 1
Case $n>d$: variance bound $\mathbf{V}(4.1)$, bias bound \mathbf{B} (4.2)

		$n / d=5$			$n / d=20$	
Spectral Decay	Implicit Reg	\mathbf{V}		\mathbf{B}	\mathbf{B}	
$\kappa=e^{-1}$	0.005418	14.2864	0.07898		9.4980	0.07891
$\kappa=e^{0}$	0.2525	0.4496	0.7535		0.1748	0.7538
$\kappa=e^{1}$	0.7501	0.1868	1.6167		0.05835	1.6165

FIG. 2. Generalization error as a function of varying spectral decay. Here, $d=200, n=400,1000,2000,4000$.

Confirmation of trade-off using synthetic data $(d>n)$

Table 2
Case $d>n$: variance bound $\mathbf{V}(4.3)$, bias bound \mathbf{B} (4.4)

		$d / n=5$			$d / n=20$	
Spectral Decay	Implicit Reg	\mathbf{V}		\mathbf{C}	\mathbf{B}	\mathbf{B}
$\kappa=e^{-1}$	0.005028	3.9801	0.07603		0.7073	0.07591
$\kappa=e^{0}$	0.2503	0.1746	0.7513		0.04438	0.7502
$\kappa=e^{1}$	0.7466	0.06329	1.6106		0.01646	1.6102

FIG. 3. Generalization error as a function of varying spectral decay. Here, $n=200, d=400,1000,2000,4000$.

Experiments

MNIST

- Use the RBF kernel $k\left(x, x^{\prime}\right)=\exp \left(-\left\|x-x^{\prime}\right\|^{2} / d\right)$ where $d=784$.
- Binary classification: $10 C_{2}$ experiments, with many $\lambda \mathrm{s}$.
- Measure: out-of-sample test error $\frac{\sum_{i}\left(\hat{f}\left(x_{i}\right)-y_{i}\right)^{2}}{\sum_{i}\left(\hat{y}-y_{i}\right)}$

FIG. 4. Test error, normalized as in (6.1). The y-axis is on the log scale.

Experiments

Synthetic dataset

- Use the RBF kernel $k\left(x, x^{\prime}\right)=\exp \left(-\left\|x-x^{\prime}\right\|^{2} / d\right)$.
- Target nonlinear function $f_{\star}(x)=\sum_{l=1}^{100} K\left(x, \theta_{l}\right)$ where $\theta_{l} \sim \mathcal{N}\left(0, I_{d}\right)$.
- Generating data: $x_{i} \sim \mathcal{N}\left(0, \Sigma_{d, k}\right), y_{i}=f_{\star}\left(x_{i}\right)+\epsilon_{i}$ where $\epsilon_{i} \sim \mathcal{N}\left(0, \sigma^{2}\right)$ with $\sigma=0.1,0.5$.
- Measure: out-of-sample test error $\frac{\sum_{i}\left(\hat{f}\left(x_{i}\right)-y_{i}\right)^{2}}{\sum_{i}\left(\hat{y}-y_{i}\right)}$

Experiments

Synthetic dataset

- For a general pair of high dimensionality ratio n / d, there is a sweet spot of κ (favorable geometric structure) such that the trade-off is optimized.

FIG. 6. Varying spectral decay: case $n>d$. Columns from left to right: $\kappa=e^{-1}, e^{0}, e^{1}$. Rows from top to bottom: ordered eigenvalues, and the histogram of eigenvalues. Here, we plot the population eigenvalues for Σ_{d}, and the empirical eigenvalues for $X^{*} X / n$. In this simulation, $d=100, n=500,2000$.

Experiments

Synthetic dataset

- For a general pair of high dimensionality ratio d / n, there is a sweet spot of κ (favorable geometric structure) such that the trade-off is optimized.

Fig. 7. Varying spectral decay: case $d>n$. Columns from left to right: $\kappa=e^{-1}, e^{0}, e^{1}$. Rows from top to bottom: ordered eigenvalues, and the histogram of eigenvalues. Here, we plot the population eigenvalues for Σ_{d}, and the empirical eigenvalues for $X X^{*} / d$. In this simulation, $d=2000, n=400,100$.

