Just interpolate: kernel "ridgeless" regression can generalize Tengyuan Liang and Alexander Rakhlin, AoS 2020

Kunwoong Kim

January 17, 2022

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction

General least-square objective is

$$\min_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} (f(x_i) - y_i)^2 + \lambda ||f||_{\mathcal{H}}^2$$

where \mathcal{H} is the Hilbert space.

- The regularization parameter λ is a knob for balancing bias and variance.
- However, this paper shows that the test error decreases as λ decreases due to the *implicit regularization* using kernel based regression.
- Implicit regularization occurs by (1) the curvature of the kernel function and (2) data geometry for high-dimensional data.

Notations

Denote the true function as $f_{\star}(x) = \mathbf{E}(\mathbf{y}|\mathbf{x} = x)$. The interpolation estimator studied in this paper is defined as

$$\hat{f} = \operatorname*{arg\,min}_{f \in \mathcal{H}} ||f||_{\mathcal{H}} \text{ s.t. } f(x_i) = y_i, \forall i.$$

When K(X, X) is full rank, it is equivalent to

$$\hat{f}(x) = K(x, X)K(X, X)^{-1}Y$$

where $X = [x_1, \ldots, x_n]^\top \in \mathbb{R}^{n \times d}$, $Y = [y_1, \ldots, y_n]^\top \in \mathbb{R}^n$, $K(X, X) = [K(x_i, x_j)]_{i,j} \in \mathbb{R}^{n \times n}$, and, for a new x, we denote $K(x, X) = [K(x, x_1), \ldots, K(x, x_n)] \in \mathbb{R}^{1 \times n}$.

Key quantities

Denote ∑_d = E_µ(x_ix_i[⊤]) the covariance matrix and the operator norm ||∑_d||_{op}.

We set the kernel function as

$$K(x, x') = h(\frac{1}{d} \langle x, x' \rangle)$$

for some nonlinear smooth function $h(\cdot):\mathbb{R}\to\mathbb{R}$ in a neighborhood of 0. Here, define

$$\alpha = h(0) + h''(0) \frac{Tr(\Sigma_d^2)}{d}$$
$$\beta = h'(0)$$
$$\gamma = h(\frac{Tr(\Sigma_d)}{d}) - h(0) - h'(0) \frac{Tr(\Sigma_d)}{d}$$

 $\alpha,\beta,$ and γ are the quantities related to the curvature of $h(\cdot).$

Main result

Assumptions

- 1. High dimensionality: $\exists c,C>0$ such that $c\leq d/n\leq C.$ $||\Sigma_d||_{op}\leq 1$
- 2. (8+m) moments: $|(\Sigma_d)^{-1/2}x_i)_j| \le Cd^{\frac{2}{8+m}}$ for all $1 \le j \le d$ and some m > 0.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで 5/16

- 3. Noise condition: $\exists \sigma > 0$ such that $\mathbb{E}((f_{\star}(\mathbf{x}) - y)^2 | \mathbf{x} = x) \leq \sigma^2$ for all x.
- 4. Nonlinear kernel: $K(x,x) \leq M$ for any x, where $K(x,x') = h(\frac{1}{d}\langle x,x'\rangle).$

Main result (Theorem 1)

$$\mathbb{E}_{Y|X}||\hat{f} - f_\star||^2 \le \phi_{n,d}(X, f_\star) + \epsilon(n, d) \tag{1}$$

with probability at least $1-2\delta-d^{-2}$ where

$$\phi_{n,d}(X, f_{\star}) = \mathbf{V} + \mathbf{B}$$

$$= \frac{8\sigma^{2}||\Sigma_{d}||_{op}}{d} \sum_{j} \frac{\lambda_{j}(\frac{XX^{\top}}{d} + \frac{\alpha}{\beta}\mathbf{1}\mathbf{1}^{\top})^{2}}{(\frac{\gamma}{\beta} + \lambda_{j}(\frac{XX^{\top}}{d} + \frac{\alpha}{\beta}\mathbf{1}\mathbf{1}^{\top}))^{2}}$$

$$+ ||f_{\star}||_{\mathcal{H}}^{2} \inf_{0 \le k \le n} \left(\frac{1}{n} \sum_{j > k} \lambda_{j}(\mathbf{K}_{X}\mathbf{K}_{X}^{\top}) + 2M\sqrt{\frac{k}{n}}\right).$$
(2)

and $\epsilon(n,d) = \mathcal{O}(d^{-\frac{m}{8+m}}\log^{4.1} d) + \mathcal{O}(n^{-\frac{1}{2}}\log^{0.5}(n/\delta)).$

<ロ > < 母 > < 臣 > < 臣 > < 臣 > 臣 の Q @ 6/16

Main result

Assume σ^2 and $||f_{\star}||^2_{\mathcal{H}}$ are guessed. Message

- V and B do not depend on λ (only depends on α, β , and γ .).
- V decreases (\hat{f} is generalized) as γ increases and when the data matrix enjoys certain decay of the eigenvalues.
- ▶ B decreases as the eigenvalue decay of K is fast.

Example: What if using linear kernel (i.e., h(a) = a)?

Since γ = 0, V becomes very large if λ_j(XX^T/d + α/β11^T) are small. In contrast, curvature of h introduces *implicit* regularization through a nonzero γ.

<ロト < @ ト < E ト < E ト E の Q で 7/16

Behavior of the data-dependent bound

Let $K(x, x') = \exp(\frac{2||x-x'||}{d})$ with $\mathbf{r} = \gamma/\beta \asymp (\frac{Tr(\Sigma_d)}{d})^2$. \blacktriangleright Case n > d. The bounds are

$$\mathbf{V} \preceq \frac{1}{n} \sum_{j=1}^{d} \frac{\lambda_j (XX^{\top}/n)}{(\frac{d}{n}\mathbf{r} + \lambda_j (XX^{\top}/n))^2}$$

and

$$\mathbf{B} \precsim \mathbf{r} + \frac{1}{d} \sum_{j=1}^{d} \lambda_j (XX^{\top}/n).$$

Here, **r** controls the trade-off between **V** and **B**. • Case d > n. The bounds are

$$\mathbf{V} \preceq \frac{1}{d} \sum_{j=1}^{n} \frac{\lambda_j (XX^{\top}/d)}{(\mathbf{r} + \lambda_j (XX^{\top}/d))^2}$$

and

$$\mathbf{B} \precsim \mathbf{r} + \frac{1}{n} \sum_{j=1}^{n} \lambda_j (X X^\top / d).$$

Confirmation of trade-off using synthetic data

- Parametrize the eigenvalues of covariance as $\lambda_j(\Sigma_d) = (1 ((j-1)/d)^{\kappa})^{1/\kappa}$ where κ controls approximate "low-rankness" of the data: the closer κ is to 0, the faster does the spectrum of the data decay.
- Use the RBF kernel $k(x, x') = \exp(-||x x'||^2/d)$.
- Target nonlinear function $f_{\star}(x) = \sum_{l=1}^{100} K(x, \theta_l)$ where $\theta_l \sim \mathcal{N}(0, I_d)$.
- Then, generate as $x_i \sim \mathcal{N}(0, \Sigma_{d,k}), y_i = f_{\star}(x_i) + \epsilon_i$ where $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$ for some σ^2 .

<ロト < 部 > < 語 > < 語 > < 語 > 目 の Q (200 g/16)

Small κ (fast spectral decay) \rightarrow Large V. Big κ (slow spectral decay) \rightarrow Large B.

Examples

▶
$$n > d$$

(Low rank) $\Sigma_d = diag(1, ..., 1, 0, ..., 0)$ with ϵd ones. Then,
 $\mathbf{r} = \epsilon^2$ and $\lambda_j (XX^\top/n) \ge (1 - \sqrt{\epsilon d/n})^2$ with high prob.
Then,
 d

$$\mathbf{V} \precsim rac{d}{n} \epsilon$$
 and $\mathbf{B} \precsim \epsilon^2 + \epsilon$.

Thus $\mathbf{V}, \mathbf{B} \to 0$ as $\epsilon \to 0$ for n > d.

• d > n(Favorable spectral decay) If $\mathbf{r}^{1/2} = Tr(\Sigma_d)/d = \mathcal{O}((n/d)^{1/3}),$ $\mathbf{V} \precsim \frac{n}{d} \frac{1}{4\mathbf{r}}$ and $\mathbf{B} \precsim \mathbf{r}^{1/2},$

thus $\mathbf{V}, \mathbf{B} \to 0$ for d >> n.

Confirmation of trade-off using synthetic data (n > d)

Spectral Decay	Implicit Reg	n/d = 5		n/d = 20	
		V	В	V	В
$\kappa = e^{-1}$	0.005418	14.2864	0.07898	9.4980	0.07891
$\kappa = e^0$	0.2525	0.4496	0.7535	0.1748	0.7538
$\kappa = e^1$	0.7501	0.1868	1.6167	0.05835	1.6165

TABLE 1 Case n > d: variance bound **V** (4.1), bias bound **B** (4.2)

FIG. 2. Generalization error as a function of varying spectral decay. Here, d = 200, n = 400, 1000, 2000, 4000.

<ロト < @ ト < E ト < E ト E の へ C 11/16

Confirmation of trade-off using synthetic data (d > n)

Spectral Decay	Implicit Reg	d/n = 5		d/n = 20	
		V	В	V	В
$\kappa = e^{-1}$	0.005028	3.9801	0.07603	0.7073	0.07591
$\kappa = e^0$	0.2503	0.1746	0.7513	0.04438	0.7502
$\kappa = e^1$	0.7466	0.06329	1.6106	0.01646	1.6102

TABLE 2 Case d > n: variance bound **V** (4.3), bias bound **B** (4.4)

FIG. 3. Generalization error as a function of varying spectral decay. Here, n = 200, d = 400, 1000, 2000, 4000.

<ロト < @ ト < E ト < E ト E の Q C 12/16

MNIST

- Use the RBF kernel $k(x, x') = \exp(-||x x'||^2/d)$ where d = 784.
- Binary classification: $10C_2$ experiments, with many λ s.
- Measure: out-of-sample test error $\frac{\sum_i (\hat{f}(x_i) y_i)^2}{\sum_i (\bar{y} y_i)}$

FIG. 4. Test error, normalized as in (6.1). The y-axis is on the log scale.

Synthetic dataset

- Use the RBF kernel $k(x, x') = \exp(-||x x'||^2/d)$.
- Target nonlinear function $f_{\star}(x) = \sum_{l=1}^{100} K(x, \theta_l)$ where $\theta_l \sim \mathcal{N}(0, I_d)$.
- Generating data: $x_i \sim \mathcal{N}(0, \Sigma_{d,k}), y_i = f_{\star}(x_i) + \epsilon_i$ where $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$ with $\sigma = 0.1, 0.5$.

• Measure: out-of-sample test error $\frac{\sum_i (\hat{f}(x_i) - y_i)^2}{\sum_i (\bar{y} - y_i)}$

Synthetic dataset

For a general pair of high dimensionality ratio n/d, there is a sweet spot of κ (favorable geometric structure) such that the trade-off is optimized.

FIG. 6. Varying spectral decay: case n > d. Columns from left to right: $\kappa = e^{-1}, e^0, e^1$. Rows from top to bottom: ordered eigenvalues, and the histogram of eigenvalues. Here, we plot the population eigenvalues for Σ_d , and the empirical eigenvalues for X^*X/n . In this simulation, d = 100, n = 500, 2000.

Synthetic dataset

For a general pair of high dimensionality ratio d/n, there is a sweet spot of κ (favorable geometric structure) such that the trade-off is optimized.

FIG. 7. Varying spectral decay: case d > n. Columns from left to right: $\kappa = e^{-1}, e^0, e^1$. Rows from top to bottom: ordered eigenvalues, and the histogram of eigenvalues. Here, we plot the population eigenvalues for Σ_d , and the empirical eigenvalues for XX^*/d . In this simulation, d = 2000, n = 400, 100.