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Introduction

▶ General least-square objective is

min
f∈H

1

n

n∑
i=1

(f(xi)− yi)
2 + λ||f ||2H

where H is the Hilbert space.

▶ The regularization parameter λ is a knob for balancing bias
and variance.

▶ However, this paper shows that the test error decreases as λ
decreases due to the implicit regularization using kernel based
regression.

▶ Implicit regularization occurs by (1) the curvature of the kernel
function and (2) data geometry for high-dimensional data.
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Notations

Denote the true function as f⋆(x) = E(y|x = x).
The interpolation estimator studied in this paper is defined as

f̂ = argmin
f∈H

||f ||H s.t. f(xi) = yi,∀i.

When K(X,X) is full rank, it is equivalent to

f̂(x) = K(x,X)K(X,X)−1Y

where X = [x1, . . . , xn]
⊤ ∈ Rn×d, Y = [y1, . . . , yn]

⊤ ∈ Rn,
K(X,X) = [K(xi, xj)]i,j ∈ Rn×n, and, for a new x, we denote
K(x,X) = [K(x, x1), . . . ,K(x, xn)] ∈ R1×n.
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Key quantities

▶ Denote Σd = Eµ(xix
⊤
i ) the covariance matrix and the

operator norm ||Σd||op.
▶ We set the kernel function as

K(x, x′) = h(
1

d
⟨x, x′⟩)

for some nonlinear smooth function h(·) : R → R in a
neighborhood of 0. Here, define

α = h(0) + h′′(0)
Tr(Σ2

d)

d

β = h′(0)

γ = h(
Tr(Σd)

d
)− h(0)− h′(0)

Tr(Σd)

d

α, β, and γ are the quantities related to the curvature of h(·).
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Main result

Assumptions

1. High dimensionality: ∃c, C > 0 such that c ≤ d/n ≤ C.
||Σd||op ≤ 1

2. (8+m) moments: |(Σd)
−1/2xi)j | ≤ Cd

2
8+m for all 1 ≤ j ≤ d

and some m > 0.

3. Noise condition: ∃σ > 0 such that
E((f⋆(x)− y)2|x = x) ≤ σ2 for all x.

4. Nonlinear kernel: K(x, x) ≤ M for any x, where
K(x, x′) = h(1d⟨x, x

′⟩).
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Main result (Theorem 1)

EY |X ||f̂ − f⋆||2 ≤ ϕn,d(X, f⋆) + ϵ(n, d) (1)

with probability at least 1− 2δ − d−2 where

ϕn,d(X, f⋆) = V +B

=
8σ2||Σd||op

d

∑
j

λj(
XX⊤

d + α
β 11

⊤)2

( γβ + λj(
XX⊤

d + α
β 11

⊤))2

+ ||f⋆||2H inf
0≤k≤n

 1

n

∑
j>k

λj(KXK⊤
X) + 2M

√
k

n

 .

(2)

and ϵ(n, d) = O(d−
m

8+m log4.1 d) +O(n− 1
2 log0.5(n/δ)).
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Main result

Assume σ2 and ||f⋆||2H are guessed.
Message

▶ V and B do not depend on λ (only depends on α, β, and γ.).

▶ V decreases (f̂ is generalized) as γ increases and when the
data matrix enjoys certain decay of the eigenvalues.

▶ B decreases as the eigenvalue decay of K is fast.

Example: What if using linear kernel (i.e., h(a) = a)?

▶ Since γ = 0, V becomes very large if λj(
XX⊤

d + α
β 11

⊤) are
small. In contrast, curvature of h introduces implicit
regularization through a nonzero γ.
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Behavior of the data-dependent bound
Let K(x, x′) = exp(2||x−x′||

d ) with r = γ/β ≍ (Tr(Σd)
d )2.

▶ Case n > d. The bounds are

V ≾
1

n

d∑
j=1

λj(XX⊤/n)

( dnr+ λj(XX⊤/n))2

and

B ≾ r+
1

d

d∑
j=1

λj(XX⊤/n).

Here, r controls the trade-off between V and B.
▶ Case d > n. The bounds are

V ≾
1

d

n∑
j=1

λj(XX⊤/d)

(r+ λj(XX⊤/d))2

and

B ≾ r+
1

n

n∑
j=1

λj(XX⊤/d).
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Confirmation of trade-off using synthetic data

▶ Parametrize the eigenvalues of covariance as
λj(Σd) = (1− ((j − 1)/d)κ)1/κ where κ controls approximate
“low-rankness” of the data: the closer κ is to 0, the faster
does the spectrum of the data decay.

▶ Use the RBF kernel k(x, x′) = exp(−||x− x′||2/d).
▶ Target nonlinear function f⋆(x) =

∑100
l=1K(x, θl) where

θl ∼ N (0, Id).

▶ Then, generate as xi ∼ N (0,Σd,k), yi = f⋆(xi) + ϵi where
ϵi ∼ N (0, σ2) for some σ2.

Small κ (fast spectral decay) → Large V.
Big κ (slow spectral decay) → Large B.
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Examples

▶ n > d
(Low rank) Σd = diag(1, . . . , 1, 0, . . . , 0) with ϵd ones. Then,
r = ϵ2 and λj(XX⊤/n) ≥ (1−

√
ϵd/n)2 with high prob.

Then,

V ≾
d

n
ϵ and B ≾ ϵ2 + ϵ.

Thus V,B → 0 as ϵ → 0 for n > d.

▶ d > n
(Favorable spectral decay) If
r1/2 = Tr(Σd)/d = O((n/d)1/3),

V ≾
n

d

1

4r
and B ≾ r1/2,

thus V,B → 0 for d >> n.
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Confirmation of trade-off using synthetic data (n > d)
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Confirmation of trade-off using synthetic data (d > n)
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Experiments

MNIST

▶ Use the RBF kernel k(x, x′) = exp(−||x− x′||2/d) where
d = 784.

▶ Binary classification: 10C2 experiments, with many λs.

▶ Measure: out-of-sample test error
∑

i(f̂(xi)−yi)
2∑

i(ȳ−yi)
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Experiments

Synthetic dataset

▶ Use the RBF kernel k(x, x′) = exp(−||x− x′||2/d).
▶ Target nonlinear function f⋆(x) =

∑100
l=1K(x, θl) where

θl ∼ N (0, Id).

▶ Generating data: xi ∼ N (0,Σd,k), yi = f⋆(xi) + ϵi where
ϵi ∼ N (0, σ2) with σ = 0.1, 0.5.

▶ Measure: out-of-sample test error
∑

i(f̂(xi)−yi)
2∑

i(ȳ−yi)
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Experiments

Synthetic dataset

▶ For a general pair of high dimensionality ratio n/d, there is a
sweet spot of κ (favorable geometric structure) such that the
trade-off is optimized.
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Experiments

Synthetic dataset

▶ For a general pair of high dimensionality ratio d/n, there is a
sweet spot of κ (favorable geometric structure) such that the
trade-off is optimized.


