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Introduction

• Classical belief
- A model with zero training error is overfit to the training data and will

typically generalize poorly
• Interpolation learning

• Achieving low population error while training error is exactly zero in a noisy,
non-realizable setting

• Related to "double descent" (Belkin et al, 2018)
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Notation

• iid observations (x1, y1), · · · , (xn, yn) ∼ Dn where D is given by,
- x ∈ Rp is drawn from N (0,Σ) with Σ ≻ 0 and ϵ ∈ R from N (0, σ2)

- There is some fixed ω∗ ∈ Rp such that y = ⟨ω∗, x⟩+ ϵ

• consider a "junk features" setting, where x decomposes into "signal" and
"junk" components

- let Σ =

[
Ids 0dS×dJ

0dJ×dS
λn
dJ

IdJ

]
where dS + dJ = p and λn > 0

- In other words, x = (xS , xJ), where xS ∼ N (0, IdS ) and xJ ∼ N (0, λn
dJ

IdJ )

- Further the label depends only on xS : ω∗ = (ω∗
S , 0dJ ) with ω∗

S ∈ RdS

• The population risk and empirical risk are,

LD(ω) = E(x,y)∼D[(y − ⟨ω, x⟩)2] = LD(ω∗) + ∥ω − ω∗∥2
Σ

LS(ω) =
1
n
∥Y − Xω∥2 = LS(ω

∗) + ∥ω − ω∗∥2
Σ̂ − 2

n
⟨XTE , ω − ω∗⟩
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Interpolation Learning

• Recent works of interpolation learning are not based on uniform
convergence

• Can interpolation learning be explained by uniform convergence?

LD(f̂ ) ≤ LS(f̂ ) + sup
f∈F

|LD(f )− LS(f )|

• Want the left hand side to converge to the Bayes optimal risk

• Uniform convergence may be unable to explain generalization in deep
learning (Nagarajan and Kolter, 2019)
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Interpolation Learning

• In low dimensional settings, training error converges to Bayes risk and the
generalization gap vanishes

• In high dimensional interpolation settings, the first term is zero so the
generalization gap needs to converge exactly to the Bayes risk!

• Can we show consistency of interpolators in noisy settings with uniform
convergence?

Answer: For fixed F , No.

But, Yes if F only contains interpolating predictors!

5



Our testbed problem

• a specific high dimensional linear regression problem with "junk" features

• Low norm interpolation learning: minimal l2 norm interpolator

ω̂MN = argmin
ω∈Rp s.t. Xω=Y

∥ω∥2
2 = XT (XXT )−1Y

• The paper only cares about consistency in expectation

E[LD(ω̂MN)− LD(ω
∗)] → 0
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Negative results

• l2 norm ball

Theorem: If λ = o(n)

lim
n→∞

lim
dJ→∞

E

 sup
∥ω∥ ≤ ∥ω̂MN∥

|LD(ω)− LS(ω)|

 = ∞

• what about other hypothesis classes?

Theorem: Nagarajan, Kolter, NeurlPS 2019a

For each δ ∈
(

0,
1
2

)
, let Pr (S ∈ Sn,δ) ≥ 1 − δ,

ω̂ a natural consistent interpolator, and Wn,δ = {ω̂(S) : S ∈ Sn,δ}

Then, almost surely,

lim
n→∞

lim
dJ→∞

sup
S∈Sn,δ

sup
ω∈Wn,δ

|LD(ω)− LS(ω)| ≥ 3σ2

aUniform convergence may be unable to explain generalization in deep learning
aUniform convergence may be unable to explain generalization in deep learning
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Positive results

• Uniform convergence of zero-error predictor

sup
∥ω∥≤B,LS (ω)=0

|LD(ω)− LS(ω)|

• Visualization of the hypothesis class:

• Intersection between norm ball and interpolation hyperplane

Theorem: if λn = o(n), fix a sequence (αn) → α with each αn ≥ 1, then

lim
n→∞

lim
dJ→∞

E

[
sup

∥ω∥≤α∥ω̂MN∥,LS (ω)=0
|LD(ω)− LS(ω)|

]
= α2LD(ω∗)
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Positive results

Some low-norm non-interpolators do not generalize

Some high-norm interpolators do not generalize

All low-norm interpolators generalize, hence the combination is vital!
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Speculative bound

• This result would be implied by a general result like

sup
∥ω∥≤B,LS (ω)=0

LD(ω) − LS(ω) ≤
1
n
B2ξn + oP(1)

with an appropriate choice of complexity measure ξn
b

• Optimistic rate:

LD(ω)− LS(ω) ≤ ÕP

(
B2ξn
n

+

√
LS(ω)

B2ξn
n

)

• Issue: hidden factor on
B2ξn
n

of c ≤ 200, 000 log3(n)c

bξn: high-prob bound on maxi=1,...,n ∥xi∥2

cNathan Srebro, Karthik Sridharan, and Ambuj Tewari. "Optimistic Rates for Learning with a
Smooth Loss" (2010) arXiv: 1009.3896.
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Tools

• Decomposes generation gap (=risk) of surrogate interpolator + its gap to
worst interpolator

• Restricted eigenvalue under interpolation

κX (Σ) = sup
∥ω∥=1,Xω=0

ωTΣω

• Minimal risk interpolator (best interpolator possible, but cannot be
computed in practice)

ω̂MR = argmin
ω:Xω=y

LD(ω)
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Two general results

• Picking the surrogate to be minimal risk interpolator

get without any distributional assumptions that

sup
∥w∥≤∥ŵMR∥,LS (w)=0

LD(w) = LD(ŵMR) + βκX (Σ)
[
∥ŵMR∥2 − ∥ŵMN∥2]

• Picking the surrogate to be minimal norm interpolator

sup
∥w∥≤α∥ŵMN∥,LS (w)=0

LD(w) = LD(ŵMN) + (α2 − 1)κX (Σ)∥ŵMN∥2 + Rn
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Summary

• Uniformly bounding the difference between empirical and population errors
cannot show any learning in the norm ball

• Uniform convergence over any set, even one depending on the exact
algorithm and distribution, cannot show consistency

• But the paper shows that an "interpolating" uniform convergence bound
does;

• show low norm is sufficient for interpolation learning in testbed problem;
near minimal norm interpolator an also achieve consistency

• predict exact worst-case error as norm grows

• Analyzing generalization gap via duality may be broadly applicable

13


