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Introduction

® (lassical belief

- A model with zero training error is overfit to the training data and will
typically generalize poorly
® Interpolation learning
® Achieving low population error while training error is exactly zero in a noisy,
non-realizable setting

® Related to "double descent" (Belkin et al, 2018)
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® iid observations (x1,y1), ", (Xn, ¥n) ~ D" where D is given by,
- x € RP is drawn from N(0,X) with ¥ = 0 and € € R from N(0, 0?)
- There is some fixed w* € RP such that y = (w*,x) + €
® consider a "junk features" setting, where x decomposes into "signal" and
"junk" components
L, Ods x d,

- let X = A
Odyxds g7 ld,

] where ds +d; = p and A\, >0

- In other words, x = (xs, x;), where xs ~ N(0, Igs) and x; ~ N(0, A—J”ldj)
- Further the label depends only on xs : w* = (w§,04,) with wf € RYs

® The population risk and empirical risk are,

L(w) = Egeppnll(y — 0, 0)?] = Lo(w") + [l — ' |
- 2XTEw-w)

1 * *
Ls(w) = ~[IY = Xw|* = Ls(w") + [lw = w



Interpolation Learning

Recent works of interpolation learning are not based on uniform
convergence

® Can interpolation learning be explained by uniform convergence?

Lp(f) < Ls(f) + sup Lo (F) = Ls(f)]

Want the left hand side to converge to the Bayes optimal risk

® Uniform convergence may be unable to explain generalization in deep
learning (Nagarajan and Kolter, 2019)



Interpolation Learning

® In low dimensional settings, training error converges to Bayes risk and the

generalization gap vanishes

® In high dimensional interpolation settings, the first term is zero so the

generalization gap needs to converge exactly to the Bayes risk!
® Can we show consistency of interpolators in noisy settings with uniform
convergence?
Answer: For fixed F, No.

But, Yes if F only contains interpolating predictors!



Our testbed problem

® a specific high dimensional linear regression problem with "junk" features

“signal’, dg “junk”, d; — 00
x xS i N (Ods ] Ids ) xJ i N’ (odj : ] %:‘Id.;)
w* 0

(x5,w5°)

® Low norm interpolation learning: minimal 12 norm interpolator

Ouy = argmin Jlw|3 = XT(XX")'Y
wWERP s.t. Xw=Y

® The paper only cares about consistency in expectation

E[LD(U’:}MN) — LD(UJ*)] —0



Negative results

® |2 norm ball

Theorem: If A = o(n)

nan;odILm E sup |Lp(w) — Ls(w)|| = o0
T el < llemwll

® what about other hypothesis classes?

Theorem: Nagarajan, Kolter, NeurlPS 2019?
For each § € (07 %) , let Pr(S € S8ns)>1-0,

@ a natural consistent interpolator, and W, s = {&(S) : S € Sns}
Then, almost surely,

lim lim sup sup |Lp(w)— Ls(w)| > 307
n—oo dj— o0 565"76 WEW, 5

2Uniform convergence may be unable to explain generalization in deep learning
#Uniform convergence may be unable to explain generalization in deep learning



Positive results

® Uniform convergence of zero-error predictor

sup  [Lp(w) — Ls(w)|
lw||<B,Ls(w)=0

® Visualization of the hypothesis class:

N

w: Iwll <= B} e lwi] <= B, Ls(w)=0}

® |ntersection between norm ball and interpolation hyperplane

Theorem: if A\, = o(n), fix a sequence («p) — « with each a, > 1, then

noodj=oe | lw||<all@mnllLs(w)=0

lim lim E sup |Lp(w) — Ls(w)|:| = ’Lp(w")



Positive results

Some low-norm non-interpolators do not generalize
Some high-norm interpolators do not generalize

All low-norm interpolators generalize, hence the combination is vital!



Speculative bound

® This result would be implied by a general result like
1.
sup Lp() — Ls(w) < =B + op(1)
[|w||<B,Ls(w)=0 n

with an appropriate choice of complexity measure &,

® Optimistic rate:

Lo(w) — Ls(w) < Op (ij +1/Ls(w) Bif")

2
® |ssue: hidden factor on % of ¢ < 200,000 log>(n)°

I’fn: high-prob bound on max;_s,
“Nathan Srebro, Karthik Sridharan, and Ambuj Tewari. "Optimistic Rates for Learning with a
Smooth Loss" (2010) arXiv: 1009.3896.
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Tools

® Decomposes generation gap (=risk) of surrogate interpolator + its gap to

worst interpolator

® Restricted eigenvalue under interpolation
T
kx(X)=  sup w Xw
llwol|=1,Xw=0

® Minimal risk interpolator (best interpolator possible, but cannot be

computed in practice)

Omr = argmin Lp(w)
w:Xw=y
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Two general results

® Picking the surrogate to be minimal risk interpolator

get without any distributional assumptions that

sup Lp(w) = Lp(Wmr) + Brx(Z) [[imr]® — [[Wwn|?]
[Iwl|<|Wymrll,Ls(w)=0

® Picking the surrogate to be minimal norm interpolator

sup Lp(w) = Lp(@Wmn) + (a® — 1)rx(Z)||wun||® + Rn
[Iwll <ellWmnll,Ls(w)=0
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® Uniformly bounding the difference between empirical and population errors
cannot show any learning in the norm ball

® Uniform convergence over any set, even one depending on the exact
algorithm and distribution, cannot show consistency
® But the paper shows that an "interpolating" uniform convergence bound
does:
® show low norm is sufficient for interpolation learning in testbed problem;
near minimal norm interpolator an also achieve consistency
® predict exact worst-case error as norm grows

® Analyzing generalization gap via duality may be broadly applicable
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