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Contribution(1)

▶ Prove a generic uniform convergence guarantee on the generalization error
of interpolators.

– In high-dimensional linear regression with Gaussian data

– With an arbitrary (Compact) hypothesis class

– With the class’s Gaussian width (and Gaussian radius)

▶ Norm based generalization bound

-> Used to analyze benign overfitting (minimal norm interpolators)
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Contribution(2)

▶ Applying generic bound to Euclidean norm balls

-> Recover consistency result for Barlett et al. (2020) 1

-> Confirms a prediction of Zhou et al. (2020)2 for near-minimal-norm

interpolators (in the case of Gaussian data)

▶ Applying generic bound to ℓ1−norm

-> A novel consistency result for minimum ℓ1- norm interpolators

1"Failures of model-dependent generalization bounds for least-nrom interpolation"
2"On Uniform Convergence and Low Norm Interpolation Learning"
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Main results; summary

1. A Generic uniform convergence guarantee

sup
w∈K,L̂(w)=0

L(w) ≤
1 + β

n

[
W

(
Σ

1/2
2 K

)
+

(
rad

(
Σ

1/2
2 K

)
+

∥∥w∗∥∥
Σ2

)√
2 log

(
32
δ

)]2

2. Compact set; General norm ball

sup
∥w∥≤B,L̂(w)=0

L(w) ≤ (1 + γ)
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∥∥∥Σ1/2
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∗

)2

n

3. General norm bound with minimum interpolator ŵ

∥ŵ∥ ≤ ∥w∗∥+ (1 + ϵ)1/2σ
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4. Benign overfitting with general norm (bound → σ2 as n → ∞)

L(ŵ) ≤ (1 + γ)(1 + ϵ)
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Data Model

▶ Data Model:

Y = Xw∗ + ξ, Xi
iid∼ N(0,Σ), ξ ∼ N

(
0, σ2In

)
where X ∈ Rn×d(i.i.d. , d >> n), w∗ is arbitrary, and ξ is Gaussian and

X ⊥ ξ.

▶ Papers results hold for

– Xi should be Gaussian

– ξ can be relaxed to be Sub-Gaussian
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Minimum Norm Interpolator

▶ The population loss

L(w) = E
(x,y)

(y − ⟨w , x⟩)2 = σ2 + ∥w − w∗∥2
Σ

▶ For an arbitrary norm ∥ · ∥, the minimal norm interpolator is defined by

ŵ = argminL̂(w)=0 ∥w∥
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Gaussian Width and Gaussian radius

▶ The Gaussian width of a set S ⊂ Rd :

W (S) := E
H∼N(0,Id )

sup
s∈S

|⟨s,H⟩|

▶ The radius of a set S ⊂ Rd :

rad(S) := sup
s∈S

∥s∥2

▶ For K = {w : ∥w∥2 ≤ B},

– W
(
Σ1/2K

)
= B · E

H∼N(0,Id )

∥∥Σ1/2H
∥∥

2

– rad
(
Σ1/2K

)
= sup∥w∥≤B ∥w∥Σ
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Generic Uniform Convergece Guanratee

Theorem 1, Main generalization bound

∃C1,C1 ≤ 66 such that the following is true.

Let K be an arbitrary compact set, take any covariance splitting Σ = Σ1 ⊕ Σ2,

fix δ ≤ 1/4 and let β = C1

(√
log(1/δ)

n
+
√

rank(Σ1)
n

)
.

If n is large enough that β ≤ 1, then the following holds with probability at
least 1 − δ :

sup
w∈K,L̂(w)=0

L(w) ≤
1 + β
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Effective ranks

▶ The dual norm of a norm ∥ · ∥ on Rd

∥u∥∗ := max
∥v∥=1

⟨v , u⟩

And the set of all its sub-gradients with respect to u is

∂∥u∥∗ = {v : ∥v∥ = 1, ⟨v , u⟩ = ∥u∥∗}

▶ The effective ∥ · ∥-ranks of a covariance matrix Σ are given as follows

r∥·∥(Σ) =

 E
∥∥∥Σ1/2H

∥∥∥
∗

sup∥w∥≤1 ∥w∥Σ


2

and R∥·∥(Σ) =

E
∥∥∥Σ1/2H

∥∥∥
∗

E ∥v∗∥Σ


2

where H ∼ N (0, Id) and v∗ = argminv∈∂∥Σ1/2H∥∗
∥v∥Σ
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General norm

Corollary 3

∃C1,C1 ≤ 66 such that the following is true.

Take any covariance splitting Σ = Σ1 ⊕ Σ2, let ∥ · ∥ be an arbitrary norm, fix

δ ≤ 1/4 and let γ = C1

(√
log(1/δ)
r∥·∥(Σ2)

+
√

log(1/δ)
n

+
√

rank(Σ1)
n

)
. If B ≥ ∥w∗∥

and n is large enough that γ ≤ 1, then the following holds with probability at

least 1 − δ :

sup
∥w∥≤B,L̂(w)=0

L(w) ≤ (1 + γ)

(
B · E

∥∥∥Σ1/2
2 H

∥∥∥
∗

)2

n
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General norm

Theorem 4

∃C2,C2 ≤ 64 such that the following is true.

Take any covariance split Σ = Σ1 ⊕ Σ2, let ∥ · ∥ be an arbitrary norm, and fix

δ ≤ 1/4. Denote P as ℓ2 orthogonal projection matrix onto the space spanned

by Σ2 and let H ∼ N (0, Id), and let v∗ = argmin
v∈∂

∥∥∥Σ1/2
2 H

∥∥∥
∗
∥v∥Σ2 .

Suppose that there exist ϵ1, ϵ2 ≥ 0 such that with probability at least 1 − δ/4

∥v∗∥Σ2
≤ (1 + ϵ1)E ∥v∗∥Σ2

and ∥Pv∗∥2 ≤ 1 + ϵ2

let ϵ = C2

(√
log(1/δ)
r∥·∥(Σ2)

+
√

log(1/δ)
n

+ (1 + ϵ1)
2 n

R∥·∥(Σ2)
+ ϵ2

)
.

Then if n and the effective ranks are large enough that ϵ ≤ 1, with probability

at least 1 − δ, it holds that

∥ŵ∥ ≤ ∥w∗∥+ (1 + ϵ)1/2σ

√
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E
∥∥∥Σ1/2
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∗
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Benign overfitting with general norm

Theorem 5

Fix any δ ≤ 1/2. let ∥ · ∥ be an arbitrary norm and pick a covariance split

Σ = Σ1 ⊕ Σ2. Suppose that n and the effective ranks are sufficiently large such

that γ, ϵ ≤ 1 with the same choice of γ and ϵ as in Corollary 3 and Theorem 4.

Then, with probability at least 1 − δ,

L(ŵ) ≤ (1 + γ)(1 + ϵ)

σ + ∥w∗∥
E
∥∥∥Σ1/2

2 H
∥∥∥
∗√

n


2

.
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Sufficient conditions

▶ If there exists a sequence of covariance splits Σ = Σ1 ⊕ Σ2 such that

rank (Σ1)

n
→ 0,

∥w∗∥E
∥∥∥Σ1/2

2 H
∥∥∥
∗√

n
→ 0,

1
r∥·∥ (Σ2)

→ 0,
n

R∥·∥ (Σ2)
→ 0

then, L(ŵ) converges in probability to σ2 as n → ∞
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The end

The end
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Appendix; Euclidean Norm Ball

▶ K =
{
w ∈ Rd : ∥w∥2 ≤ B

}
Corollary 1, Proof of the speculative bound (⋆) for Gaussian data

Fix any δ ≤ 1/4. with B ≥ ∥w∗∥2 and n ≳ log(1/δ), for some

γ ≲ 4
√

log(1/δ)/n, it holds with probability at least 1 − δ that

sup
∥w∥2≤B,L̂(w)=0

L(w) ≤ (1 + γ)
B2 Tr(Σ)

n
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Appendix; Euclidean Norm Ball

Theorem 2, Euclidean norm bound; special case of Theorem 4

Fix any δ ≤ 1/4. Under the model assumptions in (1) with any choice of

covariance splitting Σ = Σ1 ⊕ Σ2, there exists some

ϵ ≲
√

log(1/δ)
r(Σ2)

+
√

log(1/δ)
n

+ n log(1/δ)
R(Σ2)

such that the following is true. If n and

the effective ranks are such that ϵ ≤ 1 and R (Σ2) ≳ log(1/δ)2, then with

probability at least 1 − δ, it holds that

∥ŵ∥2 ≤ ∥w∗∥2 + (1 + ϵ)1/2σ

√
n

Tr (Σ2)
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Appendix; Euclidean Norm Ball

Corollary 2

There exists an absolute constant C1 ≤ 66 such that the following is true. Pick

any split Σ = Σ1 ⊕ Σ2, fix δ ≤ 1/4, and let

γ = C1

(√
log(1/δ)
r(Σ2)

+
√

log(1/δ)
n

+
√

rank(Σ1)
n

)
. If B ≥ ∥w∗∥2 and n is large

enough that γ ≤ 1, the following holds with probability at least 1 − δ :

sup
∥w∥2≤B,L̂(w)=0

L(w) ≤ (1 + γ)
B2 Tr (Σ2)

n
.
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Appendix; Euclidean Norm Ball

Theorem 3, Benign overfitting

Theorem 3 (Benign overfitting). Fix any δ ≤ 1/2. With any covariance splitting

Σ = Σ1 ⊕Σ2, let γ and ϵ be as defined in Corollary 2 and Theorem 2. Suppose

that n and the effective ranks are such that R (Σ2) ≳ log(1/δ)2 and γ, ϵ ≤ 1.

Then, with probability at least 1 − δ,

L(ŵ) ≤ (1 + γ)(1 + ϵ)

(
σ + ∥w∗∥2

√
Tr (Σ2)

n

)2

.
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Appendix; Euclidean Norm Ball

▶ Sufficient conditions for consistency of ŵ . As n → ∞, L(ŵ) converges in

probability to σ2 if there exists a sequence of covariance splits

Σ = Σ1 ⊕ Σ2 such that

rank (Σ1)

n
→ 0, ∥w∗∥2

√
Tr (Σ2)

n
→ 0,

n

R (Σ2)
→ 0
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Appendix; ℓ1 Norm Balls for Basis Pursuit

▶ Sufficient conditions for consistency of ŵBP . As n → ∞, L(ŵ) converges to

σ2 in probability if there exists a sequence of covariance splits

Σ = Σ1 ⊕ Σ2 such that Σ2 is diagonal and

rank (Σ1)

n
→ 0,

∥w∗∥1 E
∥∥∥Σ1/2

2 H
∥∥∥
∞√

n
→ 0,

n

r1 (Σ2)
→ 0
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