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Introduction



Introduction

® One of the central problems in learning theory is to explain the
statistical performance of deep learning algorithms.

® The bulk of recent work on this problem implicitly assumes the
classifier learned by SGD belongs to a class for which there is a
uniform and tight bound on the generalization error.

e The traditional notions of uniform convergence
(Glivenko—Cantelli classes) are may not applicable.



Introduction

® Paper extend the concept of uniform convergence to the
setting of sequences of learning problems of increasing
complexity, defined by the structural Glivenko—Cantelli
property.

® They introduce a approach to relate sequences of learning
problems which are not structural Glivenko—Cantelli to ones
that may be.

® Paper applicated it to overparameterized linear regression.



Preliminaries




® 7y,...,Z,:iid. random elements in a space S with common
distribution D

S =(Z,...,Z,) : the training sample

® Loss function / : H x & — R for a space H of hypotheses.
M (H) : space of distribution on .

For Q € M1(H), the loss and risk are defined to be

e(Q,z):/z(h,z)Q(dh), LD(Q):/e(Q,z)D(dz)

Ls(Q) = Lp (Q) : empirical risk
For he H LD(h) =Lp ((5;,) and Lg(h) =lg (5;,)

h € H : learned classifier, which is random.



Glivenko—Cantelli property and
surrogate




Glivenko—Cantelli property

Definition 3.1
Let (S, F,D) be a probability space. Let H be a collection of

measurable functions on (S, F, D).

Then H has the Glivenko—Cantelli property if

lim E {sup ’Dh—ﬁphu =0
P00 | heH

where Ph = [ h(x)P(dx) and 25,3 is the empirical distribution of an
I1D sample of size p from D.



Structural Glivenko—Cantelli property

Definition 3.2
Let {(S(p),}"(p),D(P))}peN be a sequence of probability space. Let

#(P) be a collection of measurable functions on (S(p),}'(”),D(p)).

Then H®) has the structural (D('), n(.y)-Glivenko—Cantelli property,

)

where Ph = [ h(x)P(dx) and 2;(;),3 is the empirical distribution of
an 11D sample of size p from D(P).

—

DPh— D), h

p

lim E | sup
P=00 | heqi(p)



Surrogate decomposition

Lemma 3.3 (Surrogate decomposition)
For every random element Q in M1(H)

E [LD(B) - Ls(/“v)} =E [LD(B) - LD(Q)}
+E[Lp(Q) — Ls(Q)]
+E [15(Q) - Ls(h)] .

provided the three expectations on the r.h.s. are finite



Example : overparameterized
linear regression




-
X; ~ Nixq(0,%,) : random row vectors

X=X, X))

(Vi | X) % N (XiB, 02).

6(67 (X,}/)) = (Xﬁ - }/)2

° ﬁA(X, Y)= (XTX)+XTY : minimum norm interpolating
linear predictor



Failure of uniform convergence

Lemma 4.1 (Failure of uniform convergence for overparame-

terized linear regression)

There is no sequence of measurable set {Ap}nen such that
P((X,Y) e Ay) >2/3 for all n € N and for which

limsupE  sup |Lp(B(X,Y)) = Ls(B(X,Y))| < ZLp(B)

n—oo (X Y)eA,
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The sequence of surrogate hypothesis classes

We will consider the surrogate given by the minimum norm
interpolating predictor for the training data with label noise
removed. i.e.

Bo = (X'X)" X'XB

Lemma 4.2 ((The sequence of surrogate hypothesis classes is

SGC)

{30(5) S e S(”)} . is (D(”), n) — SGC. Quantitatively, for a
nc
universal constant C > 0,
E sup Lp (50 (Xo, Yo)) —Ls (ﬁo (Xo, Yo))‘
(Xo, Yo)ERMXd xRN

0% + 1Bl IZall max (v/1o (Ea). 10 (Zn) /v/)
<C NG
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Surrogate decomposition of /3

Lemma 4.3 (Surrogate decomposition of 3)

Lo(B) - Ls(B)

= (Ls (5’0) - LS(B)) + (LD(B) —Lp (Bo))
+ (LD (Bo) —Ls (Bo)) ;

with

Ls (Bo) ~ Ls(B) = - 12|

Lo(B) — Lo (Bo) = Tr (X (X'X)" £ (x'X)* X'22') .

Lp (30) —Ls (30) =0’ — 1% H2 + B'P(X)TZP(X) 5.
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Expected risk bound for overparameterized linear regression

Theorem 4.4 (Expected risk bound for overparameterized
linear regression)

For a universal constant C > 0,

o2 + 1Bl 10l max (/7o (Z), r0 (Zn) /v/)
Jn

ELp(B) < o?+ C

te?(fny _n
n Rk: (Zn)
In particular, if {¥X,},cn and {HBHH2 |\Z,,||}nGN is bounded then
ELp(B) — o2.
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