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Introduction



Introduction

• One of the central problems in learning theory is to explain the
statistical performance of deep learning algorithms.

• The bulk of recent work on this problem implicitly assumes the
classifier learned by SGD belongs to a class for which there is a
uniform and tight bound on the generalization error.

• The traditional notions of uniform convergence
(Glivenko–Cantelli classes) are may not applicable.
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Introduction

• Paper extend the concept of uniform convergence to the
setting of sequences of learning problems of increasing
complexity, defined by the structural Glivenko–Cantelli
property.

• They introduce a approach to relate sequences of learning
problems which are not structural Glivenko–Cantelli to ones
that may be.

• Paper applicated it to overparameterized linear regression.
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Preliminaries



Notations

• Z1, . . . ,Zn : i.i.d. random elements in a space S with common
distribution D

• S = (Z1, . . . ,Zn) : the training sample

• Loss function l : H× S → R+ for a space H of hypotheses.

• M1(H) : space of distribution on H.

• For Q ∈ M1(H), the loss and risk are defined to be

ℓ(Q, z) =

∫
ℓ(h, z)Q(dh), LD(Q) =

∫
ℓ(Q, z)D(dz)

• LS(Q) = LD̂n
(Q) : empirical risk

• For h ∈ H LD(h) = LD (δh) and LS(h) = LS (δh)

• ĥ ∈ H : learned classifier, which is random.
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Glivenko–Cantelli property and
surrogate



Glivenko–Cantelli property

Definition 3.1
Let (S,F ,D) be a probability space. Let H be a collection of
measurable functions on (S,F ,D).

Then H has the Glivenko–Cantelli property if

lim
p→∞

E
[
sup
h∈H

∣∣∣Dh − D̂ph
∣∣∣] = 0

where Ph =
∫
h(x)P(dx) and D̂p is the empirical distribution of an

IID sample of size p from D.
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Structural Glivenko–Cantelli property

Definition 3.2
Let

{(
S(p),F (p),D(p)

)}
p∈N be a sequence of probability space. Let

H(p) be a collection of measurable functions on
(
S(p),F (p),D(p)

)
.

Then H(·) has the structural (D(·), n(·))-Glivenko–Cantelli property,
if

lim
p→∞

E

[
sup

h∈H(p)

∣∣∣D(p)h − D̂(p)
nph

∣∣∣] = 0

where Ph =
∫
h(x)P(dx) and D̂(p)

p is the empirical distribution of
an IID sample of size p from D(p).
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Surrogate decomposition

Lemma 3.3 (Surrogate decomposition)
For every random element Q in M1(H)

E
[
LD(ĥ)− LS(ĥ)

]
= E

[
LD(ĥ)− LD(Q)

]
+ E [LD(Q)− LS(Q)]

+ E
[
LS(Q)− LS(ĥ)

]
,

provided the three expectations on the r.h.s. are finite
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Example : overparameterized
linear regression



Notation

• Xi
iid∼ N1×d (0,Σn) : random row vectors

• X⊤ = (X⊤
1 , . . . ,X⊤

n )⊤]

• (Yi | X )
ind∼ N

(
Xiβn, σ

2).
• ℓ(β, (x , y)) = (xβ − y)2.

• β̂(X ,Y ) =
(
X⊤X

)+
X⊤Y : minimum norm interpolating

linear predictor
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Failure of uniform convergence

Lemma 4.1 (Failure of uniform convergence for overparame-
terized linear regression)

There is no sequence of measurable set {An}n∈N such that
P ((X ,Y ) ∈ An) > 2/3 for all n ∈ N and for which

lim sup
n→∞

E sup
(X̃ ,Ȳ )∈An

∣∣∣LD(β̂(X̃ , Ỹ ))− LS(β̂(X̃ , Ỹ ))
∣∣∣ ≤ 3

2
LD(β)
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The sequence of surrogate hypothesis classes

We will consider the surrogate given by the minimum norm
interpolating predictor for the training data with label noise
removed. i.e.

β̂0 =
(
X ′X

)+
X ′Xβ

Lemma 4.2 ((The sequence of surrogate hypothesis classes is
SGC){
β̂0(S) : S ∈ S(n)

}
n∈N

is
(
D(n), n

)
− SGC . Quantitatively, for a

universal constant C > 0,
E sup

(X0,Y0)∈Rn×d×Rn

∣∣∣LD (
β̂0 (X0,Y0)

)
− LS

(
β̂0 (X0,Y0)

)∣∣∣
≤ C

σ2 + ∥βn∥2 ∥Σn∥max
(√

r0 (Σn), r0 (Σn) /
√
n
)

√
n
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Surrogate decomposition of β̂

Lemma 4.3 (Surrogate decomposition of β̂)

LD(β̂)− LS(β̂)

=
(
LS

(
β̂0

)
− LS(β̂)

)
+
(
LD(β̂)− LD

(
β̂0

))
+
(
LD

(
β̂0

)
− LS

(
β̂0

))
,

with

LS

(
β̂0

)
− LS(β̂) =

1
n
∥Z∥2

LD(β̂)− LD

(
β̂0

)
= Tr

(
X
(
X ′X

)+
Σ
(
X ′X

)+
X ′ZZ ′

)
,

LD

(
β̂0

)
− LS

(
β̂0

)
= σ2 − ∥Z∥2

n
+ β′P(X )⊥ΣP(X )⊥β.
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Expected risk bound for overparameterized linear regression

Theorem 4.4 (Expected risk bound for overparameterized
linear regression)

For a universal constant C > 0,

ELD(β̂) ≤ σ2 + C
σ2 + ∥βn∥2 ∥Σn∥max

(√
r0 (Σn), r0 (Σn) /

√
n
)

√
n

+ cσ2
(
k∗n
n

+
n

Rk∗
n
(Σn)

)
In particular, if {Σn}n∈N and

{
∥βn∥2 ∥Σn∥

}
n∈N

is bounded then

ELD(β̂) → σ2.
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