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Introduction

• Overparametrized models empirically show good generalization
performance even if trained with vanishing or negative regularization.

• Understand theoretically how this effect can occur by studying the setting
of ridge regression.

• Provide non-asymptotic generalization bound for overparametrized ridge
regression model depending on the covariance structure of the data.
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Notation and Assumption

• X ∈ Rn×p : Random design matrix with i.i.d centered row.

• Σ = diag(λ1, · · · , λp) : Covariance matrix of X with λ1 ≥ · · · ≥ λp .

• XΣ−1/2 are sub-gaussian vectors with sub-gaussian norm at most σx .

• y = Xθ? + ε is the response vector, where θ? ∈ Rp is some unknown
vector, and ε is noise that is independent of X .

• Components of ε are independent and have sub-gaussian norms bounded
by σε.

• a .σx b if there exists a constant cx that only depends on σx such that
a ≤ cxb.
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Ridge Regression

• Denote the ridge estimator as

θ̂ = argmin
θ
{‖Xθ − y‖22 + λ‖θ‖22}

= X>(λIn + XX>)−1y

where assume that the matrix (λIn + XX>) is non-degenerate.
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Generalization error

• For a new independent observation x , the prediction MSE is

E
[(

x
(
θ̂ − θ∗

))2
| X , ε

]
=
∥∥∥θ̂ − θ∗∥∥∥2

Σ

=

∥∥∥∥θ∗ − X>
(
λIn + XX>

)−1
(Xθ∗ + ε)

∥∥∥∥2

Σ

.

∥∥∥∥(Ip − X>
(
λInXX

>
)−1

X

)
θ∗
∥∥∥∥2

Σ

+

∥∥∥∥X> (λIn + XX>
)−1

ε

∥∥∥∥2

Σ

where ‖x‖Σ :=
√
x>Σx .

• Denote

B :=

∥∥∥∥(Ip − X>
(
λIn + XX>

)−1
X

)
θ∗
∥∥∥∥2

Σ

V :=

∥∥∥∥X> (λIn + XX>
)−1

ε

∥∥∥∥2

Σ
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Notation

• For any matrix M ∈ Rn×p denote M0:k to be the matrix which is
comprised of the first k columns of M, and Mk:∞ to be the matrix
comprised of the rest of the columns of M.

• For any vector η ∈ Rp denote η0:k to be the matrix which is comprised of
the first k components of η, and ηk:∞ to be the matrix comprised of the
rest of the components of η.

• Σ0:k = diag(λ1, · · · , λk) and Σk:∞ = diag(λk+1, · · · ).

• Ak = Xk:∞X>k:∞ + λIn

• A−k = X0:k−1X
>
0:k−1 + Xk:∞X>k:∞ + λIn
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Theorem

Theorem (1)
Suppose λ ≥ 0 and it is also known that for some δ < 1− 4e−n/c2x with
probability at least 1− δ the condition number of Ak is at most L, then with
probability at least 1− δ − 20e−t/cx

B

L4 .σx ‖θ
∗
k:∞‖

2
Σk:∞

+ ‖θ∗0:k‖
2
Σ−1

0:k

(
λ+

∑
i>k λi

n

)2

V

σ2
εtL2 .σx

k

n
+

n
∑

i>k λ
2
i(

λ+
∑

i>k λi

)2
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Condition number of Ak

• Choose λ to control the condition number of Ak .

• To demonstrate the applications of Theorem 1, consider three different
regimes.

• If
∑

i>k λi � nλk+1 for all k, control the condition number of Ak by
choosing λ.
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Lemma

Lemma (2)
Let µmax (Ak) and µmin (Ak) be the largest eigenvalue and lowest eigenvalue of
Ak . For some absolute constant c for any t > 0 with probability at least
1− 6e−t/c ,

µmax (Ak) ≤ λ+ cσ2
x

(
λk+1(t + n) +

∑
i

λi

)
.

If it’s additionally known that for some δ, L > 0 w.p. at least 1− δ

‖X1,k:∞‖ ≥
√

E ‖X1,k:∞‖2 /L

then w.p. at least 1− nδ − 4e−t/c ,

µmin (Ak) ≥ λ+
1
L

∑
i>k

λi − cσ2
x

√√√√(t + n)

(
λ2
k+1(t + n) +

∑
i

λ2
i

)
.
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Theorem - Bound for particular covariance operators

Theorem (3)
Suppose there exists a large constant cx that only depends on σx s.t.
nλk+1 & σx

∑
i>k λi for some k < n/cx , then for λ = nλk+1 and for any

t ∈ (cx , n/cx), with probability at least 1− 26e−t/cx ,

B .σx ‖θ
∗
k:∞‖

2
Σk:∞

+ λ2
k ‖θ∗0:k‖

2
Σ−1

0:k
,

V

σ2
εt

.σx
k

n
+

∑
i>k λ

2
i

nλ2
k
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Other regimes

• If
∑

i>k λi ≥ cxnλk+1 for some large constant cx , one can control all the
eigenvalues of Ak up to constant factor even for vanishing λ. (Adding
small positive regularization has no effect)

• If
∑

i>k λi ≥ cxnλk+1 for extremely large constant cx , one can change the
bound by choosing negative λ by decreasing bias without significantly
increasing the variance.
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Theorem

Theorem (4)
Suppose the components of the data vectors are independent and there exists a
large constant cx that only depends on σx s.t.

∑
i>k λi ≥ cxnλk+1 for some

k < n/cx .
(a) For any non-negative λ <

∑
i>k λi , for any t ∈ (cx , n/cx), with probability

at least 1− 22e−t/cx ,

B .σx ‖θ
∗
k:∞‖

2
Σk:∞

+ ‖θ∗0:k‖
2
Σ−1

0:k

(∑
i>k λi

n

)2

,
V

σ2
εt

.σx
k

n
+

n
∑

i>k λ
2
i(∑

i>k λi

)2 .
(b) For ξ > cx and λ = −

∑
i>k λi + ξ

(
nλ1 +

√
n
∑

i>k λ
2
i

)
for any

t ∈ (cx , n/cx) with probability at least 1− 20e−t/cx

B .σx ‖θ
∗
k:∞‖

2
Σk:∞

+ ‖θ∗0:k‖
2
Σ−1

0:k

ξ2

n

(
nλ2

k+1 +
∑
i>k

λ2
i

)
V

σ2
εt

.σx
k

n
+

∑
i>k λ

2
i

ξ2
(
nλ2

k+1 +
∑

i>k λ
2
i

)
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Effective rank

• Define effective rank ρk and Rk .

ρk =
λ+

∑
i>k λi

nλk+1
, Rk =

(λ+
∑

i>k λi )
2∑

i>k λ
2
i

• Then the bounds for bias and variance become

B

L4 .σx ‖θ
∗
k:∞‖

2
Σk:∞

+ ‖θ∗0:k‖
2
Σ−1

0:k
λ2
k+1ρ

2
k ,

V

σ2
εtL2 .σx

k

n
+

n

Rk
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Lemma

Lemma (5)
Suppose that λ ≥ 0, components of the rows of X are independent, and the
components of the noise vector ε have unit variance. Then for some absolute
constant c for any t, k s.t. t > c and k + 2σ2

x t +
√
ktσ2

x < n/2 w · p. at least
1− 20e−t/c ,

V ≥ 1
cn

∑
i=1

min

{
1,

λ2
i

σ4
xλ2

k+1 (ρk + 2)2

}
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Lemma

Lemma (6)
For arbitrary θ̄ ∈ Rp consider the following prior distribution on θ∗ : θ∗ is
obtained from θ̄ randomly flipping signs of all its coordinates. Suppose also
that λ ≥ 0 and it is known for some k, δ, L that for any j > k w. p. at least
1− δµn (A−j) ≥ 1

L

(
λ+

∑
i>k λi

)
. Then for some absolute constant c for any

non-negative t < n
2σ2

x
w.p. at least 1− 2δ − 4e−t/c

Eθ∗B ≥
1
2

∑
i

λi θ̄
2
i(

1 + λi
2Lλk+1ρk

)2
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Theorem

Theorem (7)
Denote

B :=
∑

i

λi |θ∗i |2(
1+

λi
λk+1ρk

)2 , B̄ := ‖θ∗k:∞‖2Σk:∞
+ ‖θ∗0:k‖2Σ−1

0:k

(
λ+
∑

i>k λi

n

)2
,

V := 1
n

∑
i min

{
1, λ2

i
λ2
k+1(ρk+2)2

}
, V̄ := k

n
+

n
∑

i>k λ
2
i

(λ+
∑

i>k λi)
2 .

Suppose ρk ∈ (a, b) for some b > a > 0. Then

1 ≤ B̄

B
≤ max

{
(1 + b)2,

(
1 + a−1)2} , 1 ≤ V̄

V
≤ max

{
(2 + b)2,

(
1 + 2a−1)2} .

Alternatively, if k = min {l : ρl > b} and b > 1/n then

1 ≤ B̄

B
≤ max

{
(1 + b)2,

(
1 + b−1)2} , 1 ≤ V̄

V
≤ max

{
(2 + b)2,

(
1 + 2b−1)2} .

16


