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Introduction

® QOverparametrized models empirically show good generalization
performance even if trained with vanishing or negative regularization.

® Understand theoretically how this effect can occur by studying the setting
of ridge regression.

® Provide non-asymptotic generalization bound for overparametrized ridge
regression model depending on the covariance structure of the data.



Notation and Assumption

X € R"P : Random design matrix with i.i.d centered row.
Y = diag(A1, -+, Ap) : Covariance matrix of X with Ay > --- > X, .
XY ~1/2 are sub-gaussian vectors with sub-gaussian norm at most oy.

y = X60* + € is the response vector, where 0* € R” is some unknown
vector, and € is noise that is independent of X.

Components of ¢ are independent and have sub-gaussian norms bounded
by oe.

~0x

a < cxb.

a <., b if there exists a constant ¢, that only depends on o, such that



Ridge Regression

® Denote the ridge estimator as
6= arg;nin{\lm — vz +AlI613}
=X\, +XXT)"ty

where assume that the matrix (A, + XX ) is non-degenerate.



Generalization error

® For a new independent observation x, the prediction MSE is

E |:(x (9“-9*))2 | x,e} -

= [o" = x7 (M + xxT)f1 (X6" +¢)

(/,, X7 (/\I,,XXT)_I x) 9*

2
60— 06"
b

2

pX
2

A

>
2

+IxT (Aln n xxT)f1 e

b
where ||x]|z := VxTXx.

® Denote
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® For any matrix M € R"*? denote My to be the matrix which is
comprised of the first k columns of M, and My.. to be the matrix
comprised of the rest of the columns of M.

® For any vector 7 € RP denote 7o.x to be the matrix which is comprised of
the first k components of 7, and 7x.oc to be the matrix comprised of the
rest of the components of 7.

° zO:k — diag(/\17 . 7)\k) and zk:oo = diag()\kﬂ, . )
® Ac = XiooXiloo + Al
® Ak = Xok-1Xg k-1 + XkcooXioo + Al



Theorem (1)
Suppose A > 0 and it is also known that for some § < 1 — 4e"/< with

probability at least 1 — § the condition number of Ak is at most L, then with
probability at least 1 — § — 20e ™t/
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Condition number of A,

® Choose A to control the condition number of Ag.
® To demonstrate the applications of Theorem 1, consider three different
regimes.

e |f Zi>k Ai <€ nAk41 for all k, control the condition number of Ax by
choosing A.



Lemma

Lemma (2)
Let pimax (Ax) and pmin (Ax) be the largest eigenvalue and lowest eigenvalue of

Ak. For some absolute constant c for any t > 0 with probability at least
1—6et/c,

Hmax (Ak) <A+ CU? (AkJrl(t + n) + Z )") .
If it's additionally known that for some 6, L > 0 w.p. at least 1 — §

[ Xt koo || > A/ E | X, k00| /L

then w.p. at least 1 — nd — 4e~ /<,

Mmin(Ak)z)\-f-%Z/\i—CJf (t+n)<)\f+1t—|—n Z/\2>

i>k



Theorem - Bound for particular covariance operators

Theorem (3)
Suppose there exists a large constant c, that only depends on oy s.t.

NAki1 2 0x Doy A for some k < n/cx, then for X\ = n)\xi1 and for any
t € (cx, n/cx), with probability at least 1 — 261/,
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Other regimes

® If 37,0 Ai > &xn)gqa for some large constant ¢y, one can control all the
eigenvalues of A, up to constant factor even for vanishing A. (Adding
small positive regularization has no effect)

® If 7.0, Ai > cxn)pqa for extremely large constant cx, one can change the
bound by choosing negative A by decreasing bias without significantly
increasing the variance.
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Theorem (4)

Suppose the components of the data vectors are independent and there exists a
large constant c. that only depends on o s.t. >
k < n/c.

(a) For any non-negative A < 3., i, for any t € (cx, n/cx), with probability
at least 1 — 22e~ /%,
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(b) For§ > cxand A= =3 . Ai+¢ (n)\l /0D /\,2> for any

t € (cx, n/cx) with probability at least 1 — 20e ™"/

sk Ai > G gy for some

B <

~Ox
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Effective rank

® Define effective rank px and Ry.

_ /\+Zi>k Ai

A )
Pk = szi( APV

, 2
NMA\k+1 Zi>k A;

® Then the bounds for bias and variance become
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Lemma

Lemma (5)
Suppose that A > 0, components of the rows of X are independent, and the

components of the noise vector € have unit variance. Then for some absolute
constant ¢ for any t, k s.t. t > c and k + 202t + Vkto? < n/2 w - p. at least

1—20e""/c,
2
Ve LS min1 o
cn i=1 Ux)‘k+1 (pk + 2)
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Lemma

Lemma (6)

For arbitrary 0 € RP consider the following prior distribution on 6™ : 6" is
obtained from 6 randomly flipping signs of all its coordinates. Suppose also
that A > 0 and it is known for some k, 0, L that for any j > k w. p. at least
1—6pn(A—j) > (A4 >2;2 Ai) . Then for some absolute constant ¢ for any

n —t/c

2
20%

non-negative t < w.p. at least 1 — 2§ — 4e

1 )\,‘5,-2
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Theorem (7)

Denote

. >"|9‘*‘2 5 . 2 2 A3 Af 2
B oy B i 105l . + 05130 (25220
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Suppose pi € (a,b) for some b > a > 0. Then

1<

(@] oo

< max{(l +b)%, (1 + 371)2} , 1<

I<I<

< max {(2 +b), (1+ 2a*1)2} .
Alternatively, if k = min{/: p; > b} and b > 1/n then

1<

(@] T

< max{(l b2 (14 b’l)z} . 1<

</ <

<max{(2+ b, (1+267")°}.
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