Benign Overfitting In Ridge Regression

Hwichang Jeong
2022. 01.17

Seoul National University

Introduction

- Overparametrized models empirically show good generalization performance even if trained with vanishing or negative regularization.
- Understand theoretically how this effect can occur by studying the setting of ridge regression.
- Provide non-asymptotic generalization bound for overparametrized ridge regression model depending on the covariance structure of the data.

Notation and Assumption

- $X \in \mathbb{R}^{n \times p}:$ Random design matrix with i.i.d centered row.
- $\Sigma=\operatorname{diag}\left(\lambda_{1}, \cdots, \lambda_{p}\right)$: Covariance matrix of X with $\lambda_{1} \geq \cdots \geq \lambda_{p}$.
- $X \Sigma^{-1 / 2}$ are sub-gaussian vectors with sub-gaussian norm at most σ_{x}.
- $y=X \theta^{\star}+\epsilon$ is the response vector, where $\theta^{\star} \in \mathbb{R}^{p}$ is some unknown vector, and ϵ is noise that is independent of X.
- Components of ϵ are independent and have sub-gaussian norms bounded by σ_{ϵ}.
- $a \lesssim \sigma_{x} b$ if there exists a constant c_{x} that only depends on σ_{x} such that $a \leq c_{x} b$.

Ridge Regression

- Denote the ridge estimator as

$$
\begin{aligned}
\hat{\theta} & =\underset{\theta}{\operatorname{argmin}}\left\{\|X \theta-y\|_{2}^{2}+\lambda\|\theta\|_{2}^{2}\right\} \\
& =X^{\top}\left(\lambda I_{n}+X X^{\top}\right)^{-1} y
\end{aligned}
$$

where assume that the matrix $\left(\lambda I_{n}+X X^{\top}\right)$ is non-degenerate.

Generalization error

- For a new independent observation x, the prediction MSE is

$$
\begin{aligned}
\mathbb{E}\left[\left(x\left(\hat{\theta}-\theta^{*}\right)\right)^{2} \mid X, \varepsilon\right] & =\left\|\hat{\theta}-\theta^{*}\right\|_{\Sigma}^{2} \\
& =\left\|\theta^{*}-X^{\top}\left(\lambda I_{n}+X X^{\top}\right)^{-1}\left(X \theta^{*}+\varepsilon\right)\right\|_{\Sigma}^{2} \\
& \lesssim\left\|\left(I_{p}-X^{\top}\left(\lambda I_{n} X X^{\top}\right)^{-1} X\right) \theta^{*}\right\|_{\Sigma}^{2} \\
& +\left\|X^{\top}\left(\lambda I_{n}+X X^{\top}\right)^{-1} \varepsilon\right\|_{\Sigma}^{2}
\end{aligned}
$$

where $\|x\|_{\Sigma}:=\sqrt{x^{\top} \Sigma x}$.

- Denote

$$
\begin{aligned}
& B:=\left\|\left(I_{p}-X^{\top}\left(\lambda I_{n}+X X^{\top}\right)^{-1} X\right) \theta^{*}\right\|_{\Sigma}^{2} \\
& V
\end{aligned}
$$

Notation

- For any matrix $M \in \mathbb{R}^{n \times p}$ denote $M_{0: k}$ to be the matrix which is comprised of the first k columns of M, and $M_{k: \infty}$ to be the matrix comprised of the rest of the columns of M.
- For any vector $\eta \in \mathbb{R}^{p}$ denote $\eta_{0: k}$ to be the matrix which is comprised of the first k components of η, and $\eta_{k: \infty}$ to be the matrix comprised of the rest of the components of η.
- $\Sigma_{0: k}=\operatorname{diag}\left(\lambda_{1}, \cdots, \lambda_{k}\right)$ and $\Sigma_{k: \infty}=\operatorname{diag}\left(\lambda_{k+1}, \cdots\right)$.
- $A_{k}=X_{k: \infty} X_{k: \infty}^{\top}+\lambda I_{n}$
- $A_{-k}=X_{0: k-1} X_{0: k-1}^{\top}+X_{k: \infty} X_{k: \infty}^{\top}+\lambda I_{n}$

Theorem (1)
Suppose $\lambda \geq 0$ and it is also known that for some $\delta<1-4 e^{-n / c_{x}^{2}}$ with probability at least $1-\delta$ the condition number of A_{k} is at most L, then with probability at least $1-\delta-20 e^{-t / c_{x}}$

$$
\begin{aligned}
& \frac{B}{L^{4}} \lesssim \sigma_{x}\left\|\theta_{k: \infty}^{*}\right\|_{\Sigma_{k: \infty}}^{2}+\left\|\theta_{0: k}^{*}\right\|_{\Sigma_{0: k}^{-1}}^{2}\left(\frac{\lambda+\sum_{i>k} \lambda_{i}}{n}\right)^{2} \\
& \frac{V}{\sigma_{\varepsilon}^{2} t L^{2}} \lesssim \sigma_{x} \\
& \frac{k}{n}+\frac{n \sum_{i>k} \lambda_{i}^{2}}{\left(\lambda+\sum_{i>k} \lambda_{i}\right)^{2}}
\end{aligned}
$$

Condition number of A_{k}

- Choose λ to control the condition number of A_{k}.
- To demonstrate the applications of Theorem 1, consider three different regimes.
- If $\sum_{i>k} \lambda_{i} \ll n \lambda_{k+1}$ for all k, control the condition number of A_{k} by choosing λ.

Lemma

Lemma (2)

Let $\mu_{\text {max }}\left(A_{k}\right)$ and $\mu_{\text {min }}\left(A_{k}\right)$ be the largest eigenvalue and lowest eigenvalue of A_{k}. For some absolute constant c for any $t>0$ with probability at least $1-6 e^{-t / c}$,

$$
\mu_{\max }\left(A_{k}\right) \leq \lambda+c \sigma_{x}^{2}\left(\lambda_{k+1}(t+n)+\sum_{i} \lambda_{i}\right)
$$

If it's additionally known that for some $\delta, L>0$ w.p. at least $1-\delta$

$$
\left\|X_{1, k: \infty}\right\| \geq \sqrt{\mathbb{E}\left\|X_{1, k: \infty}\right\|^{2} / L}
$$

then w.p. at least $1-n \delta-4 e^{-t / c}$,

$$
\mu_{\min }\left(A_{k}\right) \geq \lambda+\frac{1}{L} \sum_{i>k} \lambda_{i}-c \sigma_{x}^{2} \sqrt{(t+n)\left(\lambda_{k+1}^{2}(t+n)+\sum_{i} \lambda_{i}^{2}\right)}
$$

Theorem - Bound for particular covariance operators

Theorem (3)

Suppose there exists a large constant c_{x} that only depends on σ_{x} s.t. $n \lambda_{k+1} \gtrsim \sigma_{x} \sum_{i>k} \lambda_{i}$ for some $k<n / c_{x}$, then for $\lambda=n \lambda_{k+1}$ and for any $t \in\left(c_{x}, n / c_{x}\right)$, with probability at least $1-26 e^{-t / c_{x}}$,

$$
B \lesssim \sigma_{x}\left\|\theta_{k: \infty}^{*}\right\|_{\Sigma_{k: \infty}}^{2}+\lambda_{k}^{2}\left\|\theta_{0: k}^{*}\right\|_{\Sigma_{0: k}^{-1}}^{2}, \quad \frac{V}{\sigma_{\varepsilon}^{2} t} \lesssim \sigma_{x} \frac{k}{n}+\frac{\sum_{i>k} \lambda_{i}^{2}}{n \lambda_{k}^{2}}
$$

Other regimes

- If $\sum_{i>k} \lambda_{i} \geq c_{x} n \lambda_{k+1}$ for some large constant c_{x}, one can control all the eigenvalues of A_{k} up to constant factor even for vanishing λ. (Adding small positive regularization has no effect)
- If $\sum_{i>k} \lambda_{i} \geq c_{x} n \lambda_{k+1}$ for extremely large constant c_{x}, one can change the bound by choosing negative λ by decreasing bias without significantly increasing the variance.

Theorem

Theorem (4)

Suppose the components of the data vectors are independent and there exists a large constant c_{x} that only depends on σ_{x} s.t. $\sum_{i>k} \lambda_{i} \geq c_{x} n \lambda_{k+1}$ for some $k<n / c_{x}$.
(a) For any non-negative $\lambda<\sum_{i>k} \lambda_{i}$, for any $t \in\left(c_{x}, n / c_{x}\right)$, with probability at least $1-22 e^{-t / c_{x}}$,

$$
B \lesssim \sigma_{x}\left\|\theta_{k: \infty}^{*}\right\|_{\Sigma_{k: \infty}}^{2}+\left\|\theta_{0: k}^{*}\right\|_{\Sigma_{0: k}^{-1}}^{2}\left(\frac{\sum_{i>k} \lambda_{i}}{n}\right)^{2}, \quad \frac{V}{\sigma_{\varepsilon}^{2} t} \lesssim_{\sigma_{x}} \frac{k}{n}+\frac{n \sum_{i>k} \lambda_{i}^{2}}{\left(\sum_{i>k} \lambda_{i}\right)^{2}}
$$

(b) For $\xi>c_{x}$ and $\lambda=-\sum_{i>k} \lambda_{i}+\xi\left(n \lambda_{1}+\sqrt{n \sum_{i>k} \lambda_{i}^{2}}\right)$ for any $t \in\left(c_{x}, n / c_{x}\right)$ with probability at least $1-20 e^{-t / c_{x}}$

$$
\begin{aligned}
B & \lesssim \sigma_{x}\left\|\theta_{k: \infty}^{*}\right\|_{\Sigma_{k: \infty}}^{2}+\left\|\theta_{0: k}^{*}\right\|_{\Sigma_{0: k}^{-1}}^{2} \frac{\xi^{2}}{n}\left(n \lambda_{k+1}^{2}+\sum_{i>k} \lambda_{i}^{2}\right) \\
\frac{V}{\sigma_{\varepsilon}^{2} t} & \lesssim \sigma_{x} \frac{k}{n}+\frac{\sum_{i>k} \lambda_{i}^{2}}{\xi^{2}\left(n \lambda_{k+1}^{2}+\sum_{i>k} \lambda_{i}^{2}\right)}
\end{aligned}
$$

Effective rank

- Define effective rank ρ_{k} and R_{k}.

$$
\rho_{k}=\frac{\lambda+\sum_{i>k} \lambda_{i}}{n \lambda_{k+1}}, \quad R_{k}=\frac{\left(\lambda+\sum_{i>k} \lambda_{i}\right)^{2}}{\sum_{i>k} \lambda_{i}^{2}}
$$

- Then the bounds for bias and variance become

$$
\frac{B}{L^{4}} \lesssim \sigma_{x}\left\|\theta_{k: \infty}^{*}\right\|_{\Sigma_{k: \infty}}^{2}+\left\|\theta_{0: k}^{*}\right\|_{\Sigma_{0: k}^{-1}}^{2} \lambda_{k+1}^{2} \rho_{k}^{2}, \quad \frac{V}{\sigma_{\varepsilon}^{2} t L^{2}} \lesssim \sigma_{x} \frac{k}{n}+\frac{n}{R_{k}}
$$

Lemma

Lemma (5)

Suppose that $\lambda \geq 0$, components of the rows of X are independent, and the components of the noise vector ε have unit variance. Then for some absolute constant c for any t, k s.t. $t>c$ and $k+2 \sigma_{x}^{2} t+\sqrt{k t} \sigma_{x}^{2}<n / 2 w \cdot p$. at least $1-20 e^{-t / c}$,

$$
V \geq \frac{1}{c n} \sum_{i=1} \min \left\{1, \frac{\lambda_{i}^{2}}{\sigma_{x}^{4} \lambda_{k+1}^{2}\left(\rho_{k}+2\right)^{2}}\right\}
$$

Lemma

Lemma (6)

For arbitrary $\theta \in \mathbb{R}^{p}$ consider the following prior distribution on $\theta^{*}: \theta^{*}$ is obtained from $\bar{\theta}$ randomly flipping signs of all its coordinates. Suppose also that $\lambda \geq 0$ and it is known for some k, δ, L that for any $j>k w . p$. at least $1-\delta \mu_{n}\left(A_{-j}\right) \geq \frac{1}{L}\left(\lambda+\sum_{i>k} \lambda_{i}\right)$. Then for some absolute constant c for any non-negative $t<\frac{n}{2 \sigma_{x}^{2}}$ w.p. at least $1-2 \delta-4 e^{-t / c}$

$$
\mathbb{E}_{\theta^{*}} B \geq \frac{1}{2} \sum_{i} \frac{\lambda_{i} \bar{\theta}_{i}^{2}}{\left(1+\frac{\lambda_{i}}{2 L \lambda_{k+1} \rho_{k}}\right)^{2}}
$$

Theorem (7)

Denote

$$
\begin{array}{ll}
\underline{B}:=\sum_{i} \frac{\lambda_{i}\left|\theta_{i}^{*}\right|^{2}}{\left(1+\frac{\lambda_{i}}{\lambda_{k+1}^{\rho_{k}}}\right)^{2}}, & \bar{B}:=\left\|\theta_{k: \infty}^{*}\right\|_{\Sigma_{k: \infty}}^{2}+\left\|\theta_{0: k}^{*}\right\|_{\Sigma_{0: k}^{-1}}^{2}\left(\frac{\lambda+\sum_{i>k} \lambda_{i}}{n}\right)^{2}, \\
\underline{V}:=\frac{1}{n} \sum_{i} \min \left\{1, \frac{\lambda_{i}^{2}}{\lambda_{k+1}^{2}\left(\rho_{k}+2\right)^{2}}\right\}, & \bar{V}:=\frac{k}{n}+\frac{n \sum_{i>k} \lambda_{i}^{2}}{\left(\lambda+\sum_{i>k} \lambda_{i}\right)^{2}} .
\end{array}
$$

Suppose $\rho_{k} \in(a, b)$ for some $b>a>0$. Then
$1 \leq \frac{\bar{B}}{\underline{B}} \leq \max \left\{(1+b)^{2},\left(1+a^{-1}\right)^{2}\right\}, \quad 1 \leq \frac{\bar{V}}{\underline{V}} \leq \max \left\{(2+b)^{2},\left(1+2 a^{-1}\right)^{2}\right\}$.
Alternatively, if $k=\min \left\{l: \rho_{l}>b\right\}$ and $b>1 / n$ then

$$
1 \leq \frac{\bar{B}}{\underline{B}} \leq \max \left\{(1+b)^{2},\left(1+b^{-1}\right)^{2}\right\}, \quad 1 \leq \frac{\bar{V}}{\underline{V}} \leq \max \left\{(2+b)^{2},\left(1+2 b^{-1}\right)^{2}\right\}
$$

