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Double Descent (Belkin

et al. 2019)
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® The double descent risk curve can be observed in various
situations

® Can be discussed in the context of neural networks: RFF,. ..



Random Fourier Features (Rahimi, Recht, et al. 2007)

® An approach to scaling up kernel methods for shift-invariant
kernels

® E[z,(x) 7 z(y)] = k(x,y)

Algorithm 1: Random Fourier Features
Require: A positive definite shift-invariant kernel
K(x,y) = k(x— )
Ensure: A randomized feature map z(x) : RY — R2P so that
2(x) "2(y) ~ k(x —y)
Compute the Fourier transform p of the kernel k:
p(w) = £ [e ™ Ak(A)dA
Draw D iid samples w1, ...,wp € R? from p

Let z(x) = \/%[cos(wlTx) ...cos(whx)sin(w{ x) ...sin(whx))]"
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Introduction

® Asymptotic analysis in classical learning theory:
n — oo for fixed N / N — oo for fixed n (less practicall)

® Double asymptotic regime: n, N — oo with N/n — ¢, a
constant — deal with the relative complexity and gives a
precise description of the under- to over-parameterized phase
transition



Considers random feature maps: may be viewed also as a
2-layer neural network

X = [x1,...,%n] € RP*": data matrix
¥ = o(WX) € RNV*": random feature map
¥ = [cos(WX)T, sin(WX)T)] € R™*2N: RFF



Main Contributions

® Precise characterization of the asymptotics of the RFF
empirical Gram matrix when n, p, N goes to the limit

® Derive the asymptotic training/test MSE of RFF ridge
regression as a function of the ratio N/n and A

® Detailed empirical evaluation of theoretical results
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Main Technical Results

Assumption
As n — oo, we have
® 0 < liminf, min {%,%} < limsup, max { £, %} < 00

@® limsup,, ||X|| < co and limsup, |ly|l,, < o0

e ) = [cos(WX)T, sin(WX)T] with W;; ~ N(0,1)
® Eiain = 7 lly = TX B Eeest = 3119 — =g 8I°
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Main Technical Results

® RFF ridge regressor is given by,

5=ty
n

1 .1
+ (EZXZXT + Alay) 1;ny - Lon<n

;z{ Yx 4+ M)ty - lonsp

® Resolvent: Q(\) = (1Zf%x + Al,) 7!
o LIET¥x]j 22 [Kx]jj where Kx is the Gaussian kernel matrix
2 n
{exp(—Hx,- - Xj” /2)},"]':1
® But the convergence in spectral norm || £ ¥x /N — Kx|| — 0

does not hold
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Asymptotic Deterministic Equivalent

® Need to find a deterministic equivalent for Q(\)
e Ew[Q]: matrix inverse, not convenient

® Alternative: close to Ew[Q] when n, p, N — oo and
numerically more accessible
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Asymptotic Deterministic Equivalent

Theorem (Asymptotic equivalent for E\[Q])

Under Assumption 1, for A\ > 0, we have, as n — oo

IEw[Q] — Q|| — 0

for @ = (5 (555825, + £185) + Aln) ™ Keor = Keas(X, X), Kain = Kain(X, X) € B™" and

’ ’
il llxi 112+ 11} 112

Keos(X, X/),-j = 2 cosh(x X; ) Ksin(X, X/),-j =e 2 smh(x,ij)

where (Ocos, Osin) is the unique positive solution to

1 = 1 -
Ocos = ;tr(KcosQ); Osin = ;l’r(K,;,.,Q)
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Asymptotic Training Performance

Theorem (Asymptotic Training Performance)

Under Assumption 1, for a given training set (X,y) and training MSE,

as n— oo B
Etrain - Etrain i> 0
E 7HQ H2 + ﬂ)‘i t(QKeosQ)  t(QKsinQ) 0 y QKcosz
train = 0o (1+0uin)? yTQKinQy
and L
e tr(QKco.QKm) 1 t{(QKecosQKsin)
Ql=],__—|n (14-0ces)? n (1+dsin)?
=27 | 1 tMQKeosQKain) 1 t{(QK4inQK i)
n (1+0cos)? n (1+04n)?
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Asymptotic Test Performance

Assumption (Data as concentrated random vectors)

The training data x; € RP,j € {1,...,n} are independently drawn
from one of K > 0 distribution classes 1, ..., k. There exist
constants C,7, g > 0 such that for any x; ~ s, k € {1,..., K}
and any 1-Lipschitz function f : RP — R, we have

P(|f(x;) — E[f(x))]| > t) < Ce= &/t >0

The test data R; ~ pg, i € {1,..., A} are mutually independent,
but may depend on training data X and
|E[e(WX) — a(WX)]|| = O(y/n) for o € {cos, sin}
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Asymptotic Test Performance

Theorem (Asymptotic Test Performance)

Under Assumptions 1 and 2, we have, for Eiest and test data ()A(, ) satisfying
lim sup,||X||, (0,00) that, as n — o0

= a.s.
Etest - Etest — 0

F _ L Naz o N? Ocos Ogin y QKcosz
e = 319 = 001+ 27 [ it ] 2 |} 7au Gy

where

0, = LK, (R, X) +

N1 2,6
N nn

trQd T PQK, — Eter) Ko (X, X), o € {cos, sin}

— _Keos Ken . = Keos(XX) | Kain(X,X)
and & = 1+dcos + 140’ = 1+6cos + 1+6in
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Correction due to the Large n, p, M Regime
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® Training MSEs of RFF ridge regression on MNIST.

p = 784,n = 1000, N = 250,500, 100, 2000 (class 3 versus 7,
avg over 30 runs)

® Blue: empirical, Black: Gaussian kernel predictions (N — c0),
Red: Etrain

18



Phase Transition and Corresponding Double Descent
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® FEiain = 0 at 2N = n due to the prefactor A2
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Conclusion

® Precise description of the resolvent of RFF Gram matrices

e Asymptotic training and test performance guarantees for RFF
ridge regression in the n, p, N — oo limit

® Under- and over-parameterized regimes, involve only mild
regularity assumptions on the data
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