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Double Descent (Belkin et al. 2019)

• The double descent risk curve can be observed in various
situations

• Can be discussed in the context of neural networks: RFF,. . .
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Random Fourier Features (Rahimi, Recht, et al. 2007)

• An approach to scaling up kernel methods for shift-invariant
kernels

• E [zω(x)T zω(y)] = k(x, y)

Algorithm 1: Random Fourier Features
Require: A positive definite shift-invariant kernel
k(x, y) = k(x − y)

Ensure: A randomized feature map z(x) : Rd → R2D so that
z(x)T z(y) ∼ k(x − y)
Compute the Fourier transform p of the kernel k :
p(ω) = 1

2π

∫
e−iωT∆k(∆)d∆

Draw D iid samples ω1, . . . , ωD ∈ Rd from p

Let z(x) =
√

1
D [cos(ωT

1 x) . . . cos(ωT
D x) sin(ωT

1 x) . . . sin(ωT
D x))]T
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Introduction

• Asymptotic analysis in classical learning theory:
n → ∞ for fixed N / N → ∞ for fixed n (less practical!)

• Double asymptotic regime: n,N → ∞ with N/n → c , a
constant → deal with the relative complexity and gives a
precise description of the under- to over-parameterized phase
transition
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Basic Settings

• Considers random feature maps: may be viewed also as a
2-layer neural network

• X = [x1, . . . , xn] ∈ Rp×n: data matrix

• Σx = σ(WX) ∈ RN×n: random feature map

• ΣT
x = [cos(WX)T , sin(WX)T )] ∈ Rn×2N : RFF
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Main Contributions

• Precise characterization of the asymptotics of the RFF
empirical Gram matrix when n, p,N goes to the limit

• Derive the asymptotic training/test MSE of RFF ridge
regression as a function of the ratio N/n and λ

• Detailed empirical evaluation of theoretical results
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Main Technical Results

Assumption

As n → ∞, we have

1 0 < lim infn min
{p
n ,

N
n

}
≤ lim supn max

{p
n ,

N
n

}
< ∞

2 lim supn ∥X∥ < ∞ and lim supn ∥y∥∞ < ∞

• ΣT
X = [cos(WX)T , sin(WX)T ] with Wij ∼ N (0, 1)

• Etrain = 1
n∥y − ΣT

Xβ∥2, Etest =
1
n̂∥ŷ − ΣT

X̂
β∥2
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Main Technical Results

• RFF ridge regressor is given by,

β =
1
n
ΣX(

1
n
ΣT

XΣX + λIn)−1y · 12N>n

+ (
1
n
ΣXΣ

T
X + λI2N)−1 1

n
ΣXy · 12N<n

• Resolvent: Q(λ) = ( 1
nΣ

T
XΣX + λIn)−1

• 1
N [Σ

T
XΣX]ij

a.s.−−→ [KX]ij where KX is the Gaussian kernel matrix{
exp(−∥xi − xj∥2/2)

}n

i ,j=1

• But the convergence in spectral norm ∥ΣT
XΣX/N − KX∥ → 0

does not hold
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Asymptotic Deterministic Equivalent

• Need to find a deterministic equivalent for Q(λ)

• EW[Q]: matrix inverse, not convenient

• Alternative: close to EW[Q] when n, p,N → ∞ and
numerically more accessible
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Asymptotic Deterministic Equivalent

Theorem (Asymptotic equivalent for EW[Q])
Under Assumption 1, for λ > 0, we have, as n → ∞

∥EW[Q] − Q̄∥ → 0

for Q̄ ≡ ( N
n (

Kcos
1+δcos

+
Ksin

1+δsin
) + λIn)−1,Kcos ≡ Kcos(X,X),Ksin ≡ Ksin(X,X) ∈ Rn×n and

Kcos(X,X′)ij = e−
∥xi∥

2+∥x′j ∥
2

2 cosh(xTi x′j ),Ksin(X,X′)ij = e−
∥xi∥

2+∥x′j ∥
2

2 sinh(xTi x′j )

where (δcos, δsin) is the unique positive solution to

δcos =
1
n
tr(KcosQ̄), δsin =

1
n
tr(KsinQ̄)
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Asymptotic Training Performance

Theorem (Asymptotic Training Performance)

Under Assumption 1, for a given training set (X, y) and training MSE,
as n → ∞

Etrain − Ētrain
a.s.−−→ 0

Ētrain =
λ2

n
∥Q̄y∥2 +

N

n

λ2

n2

[
tr(Q̄KcosQ̄)
(1+δcos)2

tr(Q̄KsinQ̄)
(1+δsin)2

]
Ω

[
yT Q̄KcosQ̄y
yT Q̄KsinQ̄y

]
and

Ω−1 ≡ I2 −
N

n

[
1
n

tr(Q̄KcosQ̄Kcos)
(1+δcos)2

1
n

tr(Q̄KcosQ̄Ksin)
(1+δsin)2

1
n

tr(Q̄KcosQ̄Ksin)
(1+δcos)2

1
n

tr(Q̄KsinQ̄Ksin)
(1+δsin)2

]
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Asymptotic Test Performance

Assumption (Data as concentrated random vectors)

The training data xi ∈ Rp, i ∈ {1, . . . , n} are independently drawn
from one of K > 0 distribution classes µ1, . . . , µK . There exist
constants C , η, q > 0 such that for any xi ∼ µk , k ∈ {1, . . . ,K}
and any 1-Lipschitz function f : Rp → R, we have

P(|f (xi )− E[f (xi )]| ≥ t) ≤ Ce−(t/η)q , t ≥ 0

The test data x̂i ∼ µk , i ∈ {1, . . . , n̂} are mutually independent,
but may depend on training data X and
∥E[σ(WX)− σ(WX̂)]∥ = O(

√
n) for σ ∈ {cos, sin}
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Asymptotic Test Performance

Theorem (Asymptotic Test Performance)

Under Assumptions 1 and 2, we have, for Etest and test data (X̂, ŷ) satisfying
lim supn̂∥X̂∥, lim supn̂∥ŷ∥ < ∞ with n̂/n ∈ (0,∞) that, as n → ∞

Etest − Ētest
a.s.−−→ 0

Ētest =
1
n̂
∥ŷ − N

n
Φ̂Q̄y∥2 +

N2

n2n̂

[
Θcos

(1+δcos)2
Θsin

(1+δsin)2

]
Ω

[
yT Q̄KcosQ̄y
yT Q̄KsinQ̄y

]
where

Θσ =
1
N

trKσ(X̂, X̂) +
N

n

1
n
trQ̄Φ̂T Φ̂Q̄Kσ − 2

n
trQ̄Φ̂TKσ(X̂,X), σ ∈ {cos, sin}

and Φ ≡ Kcos
1+δcos

+ Ksin
1+δsin

, Φ̂ ≡ Kcos(X̂,X)
1+δcos

+ Ksin(X̂,X)
1+δsin
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Correction due to the Large n, p,M Regime

• Training MSEs of RFF ridge regression on MNIST.
p = 784, n = 1000,N = 250, 500, 100, 2000 (class 3 versus 7,
avg over 30 runs)

• Blue: empirical, Black: Gaussian kernel predictions (N → ∞),
Red: Ētrain
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Phase Transition and Corresponding Double Descent

• Ω → ∞ at 2N = n as λ → 0

• Ētest → ∞ as N/n → 1
2

• Ētrain = 0 at 2N = n due to the prefactor λ2
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Conclusion

• Precise description of the resolvent of RFF Gram matrices

• Asymptotic training and test performance guarantees for RFF
ridge regression in the n, p,N → ∞ limit

• Under- and over-parameterized regimes, involve only mild
regularity assumptions on the data
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