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1. Introduction(1/2)

Fair machine learning...
To avoid treating samples unfairly based on sensitive
attributes
To achieve the notion of counterfactual fairness when
the true causal graph is unknown

’Counterfactual’ :
a probablilistic answer to a "what would have happened if"
question

Interestingly,

Counterfactual fairness can be achieved as if the true causal
graph were fully known when specific background knowledge is
provided.
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1. Introduction(2/2)

Can we learn causal fairenss with a partially known causal
graph, MPDAG?

In MPDAG, with respect to a variable S, a variable T can be :
- a definite descendant of S : if T is a descendant of S

- a definite non-descendant of S : if T is a non-descendant of S

- a possible descendant of S : if T is neither a definite descendant nor
a definite non-descendant of S
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2. Background(1/5)

Structural Causal Model and Causal Graph
Structural causal model(SCM)

- A framework to model causal relations b/w variables
- Vi = fi (pai ,Ui )

- The set of equations F induces a causal graph D
DAG(Directed Acyclic Graph)

- All edges are directed and no directed cycle in the graph
- If some edges are undirected, it is a PDAG(partially DAG)
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2.Background(2/5)

Structural Causal Model and Causal Graph
CPDAG(Completed partially DAG, [g∗])

- [g∗] represents a Markov equaivalence class of a DAG
- Multiple DAGs are Markov equivalent ; if encoded the

same set of conditional independence relations
MPDAG(Maximally oriented PDAG, [g ])

- CPDAG with background knowledge constraints
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2. Background(3/5)

Marcov equivalence class
- All DAGs in a Marcov equivalence class have the same

skeleton and the same v-structures
- They can be uniquely represented by a CPDAG
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2. Background(4/5)

Causal Graphs : DAG, CPDAG, MPDAG
(a) DAG with 10 nodes and 10 directed edges
(b) CPDAG [g*]
(c) MPDAG [g] : CPDAG + with the background knowledge

* E is a direct cause of K
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2. Background(5/5)

Counterfactual Fairness : Fairness criterion based on SCM

Definition (Counterfactual Fairness)

We say the prediction Ŷ is counterfactually fair if under any context
χ = x(observable attribute) and A = a(sensitive attribute),

P
(
ŶA←a(U) = y | X = x,A = a

)
= P

(
ŶA←a′(U) = y | X = x,A = a

)
, for all y and any value a’ attainable by A

Lemma

Let [g ] be the causal graph of the given model (U, V ,F). Then,

Ŷ ; counterfactually fair if it’s a function of non-descendants of A

A fair classifier give the same prediction had the person had a
different sensitive attribute to design a counterfactually fair model



The Paper

Yeonho Jung

Index

Introduction

Background

Main body
Problem
Formulation

MPDAG :
identifiability

Counterfactual
fairness in
MPDAG

Experiments

Conclusion

3.Problem Formulation

Achieving counterfactual fairness given MPDAG
- Counterfactuall fairness prediction can be framed as

Selecting the non-descendants of A to predict Y
- Not all ancestral relations b/w A and attributes in X are

identifiable in a CPDAG or MPDAG

To achieve counterfactually fair prediction
1. 3 types of descendants
- definite non-descendants of A
- definite descendants of A
- possible descendants of A

2. Build a counterfactually fair model based on identified
ancestral relations
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4.Identifiability of ancestral relations in MPDAGs

Theorem
Let A and F be two distinct vertices in an MPDAG g, and S be the
b-critical set of A with respect to F in g. Then F is a definite
descendant of A iff either A has a definite arrow into S, that is
X ∩ ch(A, g) ̸= ϕ, or A does not have a definite arrow into S but S is
non-empty and induces an imcomplete subgraph of g

We identify whether T is a definite descendant of S in MPDAG
1. possible descendants of A : B,C,D,E and H
2. b-critical set of A as to F : B,C,D
3. F : a definite descendant of A
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5. Counterfactual fairness in MPDAGs(1/2)

Propose two methods
1. Fair
- Making predictions using all definite non-descendatns of

the sensitive attribute in MPDAG
- the number of definite non-descendants in an MPDAG is

too small : low prediction accuracy
2. FairRelax
- Making predictions using all definite non-descendants and

possible descendants of sensitive attribute in MPDAG
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5. Counterfactual fairness in MPDAGs(2/2)

Assumption 5.1.
- Sensitive attribute can only be a root node in

MPDAG
- Ex) gender cannot be caused by ’education or salary’

Proposition 5.2.
- In an MPDAG with sensitive attribute A, if ’Assumption

5.1’ holds, any other attribute is either a definite
descendant or a definite non-descendant of A
Fitting a model with the definite non-descendants of A is
same thing as fitting a model with the non-descendants of
A in the true DAG.

- Thus, counterfactual fairness can be achieved as if
true causal DAG is fully known
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Experiments(1/3)

Proposed methods : Fair and FairRelax
Baselines

1) Full : standard model using all attributes
2) Unaware : Using all attributes except sensitive attributes
3) Oracle : Using all attributes that are non-descendants of

the sensitive attribute given the groundtruth DAG
4) Fair : using all definite non-descendants of the sensitive

attribute in MPDAG
5) FairRelax : Using all definite non-descendants and possible

descendants of sensitive attribute in MPDAG
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Experiments(2/3)

Dataset
1. synthetic data

- Simulated DAG is known and randomly generate 100 DAGs
- True (simulated) DAG → CPDAG → MPDAG
- Sensitive attribute: 2 or 3 values from

Binomial(Multinomial) distribution
2. real data

- 395 students with 32 attributes and ’sex’ as the sensitivity
attribute -> predict ’Grade’
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Experiments(2/3)

2. Counterfactual fairness
- Evaluate the counterfactual fairness by the absolute

difference of two values : ŶA←a(U), ŶA←a′(U)
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Experiments(3/3)

3. Accuracy
1. ’Full’ model : the lowest RMSE (not surprising)
2. ’FairRelax’ : better accuracy than ’Fair’ and ’Oracle’ model
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Conclusion

We treated a general approach to achieve counterfactual fairness
using MPDAGs when true DAG is unknown

We can achieve counterfactual fairness without a true causal
DAG to be specified.

- Finished -
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