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Self-Supervised Fair Representation Learning without Demographics

» Learning fair representation without sensitive information and even
without labels in the classification task.
— Absence of sensitive information in real scenarios - ( privacy, regulation )
» The proposed method is built on fully unsupervised training data and only
a small labeled validation set.

— Unsupervised training data / Contrastive Learning

— A small labeled validation set / Max-Min Problem
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A general fair classification task

> {(xi,y;,ai),1 < i< N}
— Xx;: input data
— y; € {0,1}¢: one-hot encoding label
— a; € {0,1}*: the senstivie attribute

» Learning the classifier h with the fairness constraint ¢(x)

N
arg mln% Zﬁcls (h (Xi) 7yi) , s.t. ¢(h) <e
h i=1
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Max-min Problem

Definition [Rawlsian Max-Min Fairness, (2001, Rawls)]

Suppose H is a set of hypotheses, and Up , (h) is the expected utility of the
hypothesis h in group ' € A, then a hypothesis h* is said to satisfy Rawlsian
Max-Min fairness principle if it maximizes the utility of the worst-off group, i.e.,

the group with the lowest utility.

h™ = arg max min Up
& heH a’eA’ /( )

» If we choose accuracy as the utility metric and relaxation of error based

fairness constraints can be formulated with cross-entropy loss,

argr mlnmax; Z Les (h(xi),yi)

)
|{I | a=a }| ie{ilaj=a’}
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Contrastive Loss

A\

A Loss for learning a representation on the unit hypersphere based on the

similarity of input features

v

With each mini-batch of size n, {x;,1 < i < n}

v

Apply random augmentation on each sample twice resulting
{%,1<i<2n}

Denote X;, X7

v

as samples with applying different augmentation to x;

v

The contrastive loss with temperature 7 with encoder fy

exp (sim (fy (%), fo (X7°%)) /7)
S iexp (sim (fo (%3), fo (%)) /7)

['ctr (;(Iy 0) = - |Og
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Problem Formulation

» {(xi),1 < i< N}: unlabeled data
> {(x",y"),1<j < M} with M < N: labeled data
> fy: contrastive encoder

» g, linear classifier with learned representation as input.
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Proposed Method

» Train fy with the weighted contrastive loss with unlabeled data

Z Vi['ctr ()?Ix 9):|

0*(v) = arg min
0 i=1

2N

» Train g, and assign weights with the average top-k labeled loss

"™ (k,0,w) { Z[ as (gw (o (x,)),yj)—)\lbl(k,ﬁ,w)L+)\1b1(k,9,w)]

where

A(k,0,w) is the k-th largest cross-entropy loss among {Lcs (gw (fo (x,)))}J'\i1
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Proposed Method

» We want to learn a weight assignment for training samples s.t. minimizing

the weighted contrastive loss.

6" (v) = arg min——
(v) arggmlnzN

2N
Z ViAC'ctr ()?Iv 9):| 5

i=1

v, w* = argmin/™ (k,0%(v),w).
v>0,w
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Weight Approximation

> At iteration t, ;i = L (Xi; 0) and denote labeled loss /Y
» We use a simple approximation of the optimal weight based on the inner
product between gradients.

ugi = (Ve /gbl)T velt,i

> Assign weights at iteration t with

2n\7t,i
S Ve 0 (X2 Vi)

where §(r) =1 <= r =0 and 0 ; = max (us,;,0)

Vti =
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Algorithm 1: Optimization Algorithm

Pre-train the encoder fy on the labeled set {( lbl lbl) 1< < l\/l}
fort=0,1---, T —1do do

for

end

1.

Sample a mini-batch of training samples of size n, apply random
augmentation on each sample twice and get a unlabled set

{%,1<i<2n}

. Calculate contrastive loss { L (%i;0)}2", denote it as {/;}>";;

Freeze fy and fine-tune the linear layer g,, on labeled set;

. Calculate labeled loss /**' (k, 8, w) denote it as /°"

Update 9:; = max ((Vgl,:v)T Velt,i>0>

2n0; ;
2/1t1/+5( /lor:

Update 0t+1 = Qt — %VQ Zi:l Vt,l'/t,i;

Update v;,; =

),whered()fl(:}rzo;
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Convergence Proof

Assumption 3.1

1" with respect to 0 is Lipschitz

1. The partial derivative of labeled loss
continuous with constant L, i.e., V21" and V3,1 are upper-bounded
by L.

2. The contrastive loss | has o-bounded gradients w.r.t. 6.

Theorem 3.2
Under Assumption 3.1 at iteration t, let the learning rate of contrastive encoder
4021 Zt Bi,
03 (82,-27e,iBei

2
ff H 2 >t Bri
satisfies a2, < min [ 2, =252 — |, where
2.t = L’ LEr ’Yr,iﬂt,i

f satisfies a1+ < )’ and the learning rate of linear classifier
Vei = va/t’b’ H \Volill, Bei= ((Velt,i)T Veltlbl) )

then the labeled loss will monotonically decrease until convergence.
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