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Self-Supervised Fair Representation Learning without Demographics

▶ Learning fair representation without sensitive information and even
without labels in the classification task.

– Absence of sensitive information in real scenarios - ( privacy, regulation )

▶ The proposed method is built on fully unsupervised training data and only
a small labeled validation set.

– Unsupervised training data / Contrastive Learning

– A small labeled validation set / Max-Min Problem
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A general fair classification task

▶ {(x i , y i , ai ), 1 ≤ i ≤ N}

– x i : input data

– y i ∈ {0, 1}c : one-hot encoding label

– ai ∈ {0, 1}s : the senstivie attribute

▶ Learning the classifier h with the fairness constraint ϕ(x)

argmin
h

1
N

N∑
i=1

Lcls (h (x i ) , y i ) , s.t. ϕ(h) ≤ ϵ
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Max-min Problem

Definition [Rawlsian Max-Min Fairness, (2001, Rawls)]

Suppose H is a set of hypotheses, and UDa′ (h) is the expected utility of the

hypothesis h in group a′ ∈ A′, then a hypothesis h∗ is said to satisfy Rawlsian

Max-Min fairness principle if it maximizes the utility of the worst-off group, i.e.,

the group with the lowest utility.

h∗ = argmax
h∈H

min
a′∈A′

UDa′ (h)

▶ If we choose accuracy as the utility metric and relaxation of error based

fairness constraints can be formulated with cross-entropy loss,

argmin
h

max
a′

1
|{i | ai = a′}|

∑
i∈{i|ai=a′}

Lcls (h (x i ) , yi )
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Contrastive Loss

▶ A Loss for learning a representation on the unit hypersphere based on the

similarity of input features

▶ With each mini-batch of size n, {x i , 1 ≤ i ≤ n}

▶ Apply random augmentation on each sample twice resulting

{x̃ i , 1 ≤ i ≤ 2n}

▶ Denote x̃ i , x̃pos
i as samples with applying different augmentation to x i

▶ The contrastive loss with temperature τ with encoder fθ

Lctr (x̃ i ; θ) = − log
exp (sim (fθ (x̃ i ) , fθ (x̃pos

i )) /τ)∑
j ̸=i exp (sim (fθ (x̃ i ) , fθ (x̃ j)) /τ)
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Problem Formulation

▶ {(x i ) , 1 ≤ i ≤ N}: unlabeled data

▶
{(

x lbl
j , y lbl

j

)
, 1 ≤ j ≤ M

}
with M ≪ N: labeled data

▶ fθ: contrastive encoder

▶ gw : linear classifier with learned representation as input.
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Proposed Method

▶ Train fθ with the weighted contrastive loss with unlabeled data

θ∗(v) = argmin
θ

1
2N

[
2N∑
i=1

viLctr (x̃ i ; θ)

]
▶ Train gw and assign weights with the average top-k labeled loss

l lbl(k, θ, ω) =

[
1
k

M∑
j=1

[
Lcls

(
gω (fθ (x j)) , y j

)
− λlbl(k, θ, ω)

]
+
+ λlbl(k, θ, ω)

]

where

λ(k, θ, ω) is the k-th largest cross-entropy loss among {Lcls (gω (fθ (x j)))}Mj=1

7/12



Proposed Method

▶ We want to learn a weight assignment for training samples s.t. minimizing

the weighted contrastive loss.

θ∗(v) = argmin
θ

1
2N

[
2N∑
i=1

viLctr (x̃ i ; θ)

]
,

v∗, ω∗ = argmin
v≥0,ω

l lbl (k, θ∗(v), ω) .
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Weight Approximation

▶ At iteration t, lt,i = Lctr (x̃i ; θ) and denote labeled loss lvt

▶ We use a simple approximation of the optimal weight based on the inner

product between gradients.

ut,i =
(
∇θ l

lbl
t

)⊤
∇θ lt,i

▶ Assign weights at iteration t with

vt,i =
2nv̂t,i∑2n

i′=1 v̂t,i′ + δ
(∑2n

i′=1 v̂t,i′
)

where δ(r) = 1 ⇐⇒ r = 0 and v̂t,i = max (ut,i , 0)
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Algorithm 1: Optimization Algorithm

Pre-train the encoder fθ on the labeled set
{(

x lbl
j , y lbl

j

)
, 1 ≤ j ≤ M

}
for for t = 0, 1 · · · ,T − 1 do do

1. Sample a mini-batch of training samples of size n, apply random

augmentation on each sample twice and get a unlabled set

{x̃i , 1 ≤ i ≤ 2n};

2. Calculate contrastive loss {Lctr (x̃i ; θ)}2n
i=1 denote it as {lt,i}2n

i=1;

3. Freeze fθ and fine-tune the linear layer gω on labeled set;

4. Calculate labeled loss lval (k, θ, ω) denote it as l lbl.
t

5. Update v̂t,i = max
(
(∇θ l

v
t )

⊤ ∇θ lt,i , 0
)

6. Update vt,i =
2nv̂t,i∑2n

i′=1 v̂t,i′+δ(
∑2n

t′=1 v̂t,i′)
, where δ(r) = 1 ⇐⇒ r = 0;

7. Update θt+1 = θt − 1
2n∇θ

∑2n
i=1 vt,i lt,i ;

end
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Convergence Proof

Assumption 3.1

1. The partial derivative of labeled loss l lbl with respect to θ is Lipschitz

continuous with constant L, i.e., ∇2
ωθ l

val and ∇2
θθ l

val are upper-bounded

by L.

2. The contrastive loss l has σ-bounded gradients w.r.t. θ.

Theorem 3.2

Under Assumption 3.1 at iteration t, let the learning rate of contrastive encoder

f satisfies α1,t ⩽
4σ2L

∑
t β

2
t,i

n
∑

t

(
β2
t,i−2γt,iβt,i

) , and the learning rate of linear classifier

satisfies α2,t ≤ min

(
2
L
,

∑
t β

2
t,i

L
∑

t γt,iβt,i

)
, where

γt,i =
∥∥∥∇ω l

lbl
t

∥∥∥ ∥∇θ lt,i∥ , βt,i =
(
(∇θ lt,i )

⊤ ∇θ l
lbl
t

)
,

then the labeled loss will monotonically decrease until convergence.
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