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Introduction

• Most of fair algorithms are based on a assumption of an identical training
and test distribution.

• However, such an assumptions are often violated in real-world applications

• In this paper, the author proposes a method to transfer model fairness
under distribution shift with a fair consistency regularization as the key
component.
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Notation

• X,A, Y : random variables of input features, sensitive attributes and label

• X ,A,Y: sample space of input features, sensitive attributes and label

• Y 1, Y 2, . . . , Y K : underlying factors (A, Y ∈ {Y 1, Y 2, . . . , Y K})
→ underlying factors other than A and Y are nuisance factors

• g : X → Y: classifier

• gtc: teacher classifier

• Sy
a , T

y
a : sample space of X|A=a,Y =y in source domain and target domain

(S = ∪y ∪a Sy
a , T = ∪y ∪a T y

a , a ∈ {0, 1}, and y ∈ {0, 1})
• Uy

a , U : group distribution and distribution on the entire data
(i.e. group is a set of data that has same sensitive attribute and label)
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Fairness Metric

• equalized odds

∆odds =
1

2

1∑
y=0

∣∣∣P (Ŷ = y|A = 0, Y = y)− P (Ŷ = y|A = 1, Y = y)
∣∣∣

• variance of group accuracy

Vacc = V ar({P (Ŷ = y|A = a, Y = y), ∀a, y})
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Underlying data generation process

• (Assumption 1) Underlying data generation process
• assume that the data is generated from a latent generative model as;

y1:K ∼ P (Y 1:K) and x ∼ P (X|Y 1:K = y1:K)

• the generative model is fixed;

PS(X|Y 1:K = y1:K) = PT (X|Y 1:K = y1:K)

• but the marginal distribution of factors varies in two domains;

PS(Y
1:K) ̸= PT (Y 1:K)

• hence, result in distribution shifts;

PS(Y
1:K , X) ̸= PT (Y 1:K , X)
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Domain Shift

• (Definition 1) Domain Shift
If at least one nuisance factor Y i has different sample space in two
domains, ∃yi ∈ Yi

T , but yi /∈ Yi
S , results in PS(Y

1:K) ̸= PT (Y
1:K) and

PS(Y
1:K , X) ̸= PT (Y

1:K , X)

• Under domain shift, the source model has never seen the data with factor
values that only exist in the target domain
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A Sufficient Condition for Transferring Fairness

• (Assumption 2) Separability of the input

Sy
a ∪ Sy

a′ = T y
a ∪ T y

a′ = Sy
a ∪ T y

a′ = ∅, ∀y, a ̸= a′

Sy
a ∪ Sy′

a′ = T y
a ∪ T y′

a′ = Sy
a ∪ T y′

a′ = ∅, ∀a, a′, y ̸= y′

(groups are separated by label and sensitive attribute)

• (Definition 2) Neighbor
→ Let T denote a set of input transformations and define the
transformation set of x as B(x) ≜ {x′|∃t ∈ T , s.t.∥x′ − t(x)∥ ≤ r}.
For any x ∈ Sy

a ∪ T y
a , define the neighbor of x as

N (x) := (Sy
a ∪ T y

a ) ∩ {x′|B(x) ∩ B(x′) ̸= ∅} and define the neighbor of a
set V ∈ X as N (V ) := ∪x∈V ∩(∪y∪aS

y
a∪T

y
a )N (x).

→ Only consider neighbors that have the same class and sensitive
attribute (i.e., from the same group).
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A Sufficient Condition for Transferring Fairness

• (Assumption 3) Intra-group expansion
Uy

a satisfies (α, c)-multiplicative expansion for some constant α ∈ (0, 1)

and c > 1, if for all V ⊂ Uy
a with PU

y
a
(V ) ≤ α, the following holds;

PU
y
a
(N (V )) ≥ min{cPU

y
a
(V ), 1}
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A Sufficient Condition for Transferring Fairness

• (Theorem 1) Guarantee fairness
Suppose we have a teacher classifier gtc with bounded unfairness such that
|εUy

a
(gtc)− εUy′

a′
(gtc)| ≤ γ, ∀a, a′ ∈ A and y, y′ ∈ Y. We assume

intra-group expansion where Uy
a satisfies (ᾱ, c̄)-multiplicative expansion

and εUy
a
(gtc) ≤ ᾱ < 1/3 and c̄ > 3,∀a, y. We define c ≜ min{1/ᾱ, c̄}, and

set µ ≤ εUy
a
(gtc), ∀a, y. If we train our classifier with algorithm

min
g∈G

max
a,y

RU
y
a
(g), s.t. LU

y
a
(g, gtc) ≤ µ ∀a, y

then, the error and unfairness of the optimal solution ĝ on the distribution
U are bounded with

ε(ĝ) ≤ 2

c− 1
εU (gtc) +

2c

c− 1
RU (ĝ)

∆odds ≤ 2

c− 1
(γ + µ+ cmax

a,y
RU

y
a
(ĝ))

13



Fair Consistency Regularization

• Two challenges in realizing theorem 1 (Guarantee fairness)
1. we need a high quality teacher model, but the model is trained only with

labeled source data
→ leveraging self-training paradigm that updates the teacher model

2. existing consistency regularization do not take fairness into consideration
→ propose a fair consistency regularization
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Fair Consistency Regularization

• Lfair =
∑

(a,y)∈{0,1}2
1

|Dy
a|

∑
x∈D

y
a
|h(f(x))− a|

• Lfconsis(g) =
∑1

y=0

∑1
a=0 λ

y
aL

y
a(g)

Ly
a(g) =

1∑
x
y
a

∑
x
y
a
1(max(gtc(x

y
a)) ≥ τ)H(argmax(gtc(x

y
a)), g(t(x

y
a)))

λ̂y
a = 1∑

x
y
a

1(max(gtc(x
y
a))≥τ)

, λy
a =

λ̂y
a∑

a,y λ̂
y
a
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Experiments
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Q&A?
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