# Transferring Fairness under Distribution Shifts via Fair Consistency Regularization

Jinwon Park January 30, 2023

Seoul National University



8 Fairness under Distribution Shifts

- Most of fair algorithms are based on a assumption of an identical training and test distribution.
- However, such an assumptions are often violated in real-world applications
- In this paper, the author proposes a method to transfer model fairness under distribution shift with a fair consistency regularization as the key component.



**3** Fairness under Distribution Shifts

#### Notation

- X, A, Y: random variables of input features, sensitive attributes and label
- $\mathcal{X}, \mathcal{A}, \mathcal{Y}:$  sample space of input features, sensitive attributes and label
- $Y^1, Y^2, \ldots, Y^K$ : underlying factors  $(A, Y \in \{Y^1, Y^2, \ldots, Y^K\})$  $\rightarrow$  underlying factors other than A and Y are nuisance factors
- $g: \mathcal{X} \to \mathcal{Y}$ : classifier
- g<sub>tc</sub>: teacher classifier
- $S_a^y, T_a^y$ : sample space of  $X|_{A=a,Y=y}$  in source domain and target domain  $(S = \cup_y \cup_a S_a^y, T = \cup_y \cup_a T_a^y, a \in \{0,1\}, and y \in \{0,1\})$
- U<sup>y</sup><sub>a</sub>, U: group distribution and distribution on the entire data (i.e. group is a set of data that has same sensitive attribute and label)

• equalized odds

$$\Delta_{odds} = \frac{1}{2} \sum_{y=0}^{1} \left| P(\hat{Y} = y | A = 0, Y = y) - P(\hat{Y} = y | A = 1, Y = y) \right|$$

• variance of group accuracy

$$V_{acc} = Var(\{P(\hat{Y} = y | A = a, Y = y), \forall a, y\})$$



#### **3** Fairness under Distribution Shifts

- (Assumption 1) Underlying data generation process
  - assume that the data is generated from a latent generative model as;

$$y^{1:K} \sim P(Y^{1:K})$$
 and  $x \sim P(X|Y^{1:K} = y^{1:K})$ 

• the generative model is fixed;

$$P_S(X|Y^{1:K} = y^{1:K}) = P_T(X|Y^{1:K} = y^{1:K})$$

• but the marginal distribution of factors varies in two domains;

$$P_S(Y^{1:K}) \neq P_T(Y^{1:K})$$

• hence, result in distribution shifts;

$$P_S(Y^{1:K}, X) \neq P_T(Y^{1:K}, X)$$

• (Definition 1) Domain Shift

If at least one nuisance factor  $Y^i$  has different sample space in two domains,  $\exists y^i \in \mathcal{Y}_T^i$ , but  $y^i \notin \mathcal{Y}_S^i$ , results in  $P_S(Y^{1:K}) \neq P_T(Y^{1:K})$  and  $P_S(Y^{1:K}, X) \neq P_T(Y^{1:K}, X)$ 

 Under domain shift, the source model has never seen the data with factor values that only exist in the target domain



B Fairness under Distribution Shifts



• (Assumption 2) Separability of the input

$$\begin{split} S^y_a \cup S^y_{a\prime} &= T^y_a \cup T^y_{a\prime} = S^y_a \cup T^y_{a\prime} = \emptyset, \ \forall y, a \neq a\prime \\ S^y_a \cup S^{y\prime}_{a\prime} &= T^y_a \cup T^{y\prime}_{a\prime} = S^y_a \cup T^{y\prime}_{a\prime} = \emptyset, \ \forall a, a\prime, y \neq y\prime \end{split}$$

(groups are separated by label and sensitive attribute)

• (Definition 2) Neighbor

→ Let  $\mathcal{T}$  denote a set of input transformations and define the transformation set of x as  $\mathcal{B}(x) \triangleq \{x' | \exists t \in \mathcal{T}, \text{s.t.} \| x' - t(x) \| \leq r\}$ . For any  $x \in S_a^y \cup T_a^y$ , define the neighbor of x as  $\mathcal{N}(x) := (S_a^y \cup T_a^y) \cap \{x' | \mathcal{B}(x) \cap \mathcal{B}(x') \neq \emptyset\}$  and define the neighbor of a set  $V \in \mathcal{X}$  as  $\mathcal{N}(V) := \bigcup_{x \in V \cap (\bigcup_y \cup_a S_a^y \cup T_a^y)} \mathcal{N}(x)$ . → Only consider neighbors that have the same class and sensitive

attribute (i.e., from the same group).

#### A Sufficient Condition for Transferring Fairness

• (Assumption 3) Intra-group expansion  $U_a^y$  satisfies  $(\alpha, c)$ -multiplicative expansion for some constant  $\alpha \in (0, 1)$ and c > 1, if for all  $V \subset U_a^y$  with  $P_{U_a^y}(V) \le \alpha$ , the following holds;

 $P_{U_a^y}(\mathcal{N}(V)) \ge \min\{cP_{U_a^y}(V), 1\}$ 



• (Theorem 1) Guarantee fairness

Suppose we have a teacher classifier  $g_{tc}$  with bounded unfairness such that  $|\varepsilon_{U_a^y}(g_{tc}) - \varepsilon_{U_{a'}^{y'}}(g_{tc})| \leq \gamma, \forall a, a' \in \mathcal{A} \text{ and } y, y' \in \mathcal{Y}.$  We assume intra-group expansion where  $U_a^y$  satisfies  $(\bar{\alpha}, \bar{c})$ -multiplicative expansion and  $\varepsilon_{U_a^y}(g_{tc}) \leq \bar{\alpha} < 1/3$  and  $\bar{c} > 3, \forall a, y$ . We define  $c \triangleq \min\{1/\bar{\alpha}, \bar{c}\}$ , and set  $\mu \leq \varepsilon_{U_a^y}(g_{tc}), \forall a, y$ . If we train our classifier with algorithm

$$\min_{g \in G} \max_{a,y} R_{U_a^y}(g), \quad \text{ s.t. } L_{U_a^y}(g, g_{tc}) \le \mu \quad \forall a, y$$

then, the error and unfairness of the optimal solution  $\hat{g}$  on the distribution U are bounded with

$$\varepsilon(\hat{g}) \leq \frac{2}{c-1} \varepsilon_U(g_{tc}) + \frac{2c}{c-1} R_U(\hat{g})$$
$$\Delta_{odds} \leq \frac{2}{c-1} (\gamma + \mu + c \max_{a,y} R_{U_a^y}(\hat{g}))$$

- Two challenges in realizing theorem 1 (Guarantee fairness)
  - 1. we need a high quality teacher model, but the model is trained only with labeled source data
    - $\rightarrow$  leveraging self-training paradigm that updates the teacher model
  - 2. existing consistency regularization do not take fairness into consideration  $\rightarrow$  propose a fair consistency regularization

## Fair Consistency Regularization



• 
$$L_{fair} = \sum_{(a,y) \in \{0,1\}^2} \frac{1}{|D_a^y|} \sum_{x \in D_a^y} |h(f(x)) - a|$$

• 
$$L_{fconsis}(g) = \sum_{y=0}^{1} \sum_{a=0}^{1} \lambda_a^y L_a^y(g)$$
  
 $L_a^y(g) = \frac{1}{\sum_{x_a^y}} \sum_{x_a^y} 1(\max(g_{tc}(x_a^y)) \ge \tau) H(\operatorname{argmax}(g_{tc}(x_a^y)), g(t(x_a^y)))$   
 $\hat{\lambda}_a^y = \frac{1}{\sum_{x_a^y} 1(\max(g_{tc}(x_a^y)) \ge \tau)}, \quad \lambda_a^y = \frac{\hat{\lambda}_a^y}{\sum_{a,y} \hat{\lambda}_a^y}$ 

| Method          | Source     |            |                 | Target     |            |                 |
|-----------------|------------|------------|-----------------|------------|------------|-----------------|
|                 | Acc        | Unfairness |                 | Acc        | Unfairness |                 |
|                 |            | $V_{acc}$  | $\Delta_{odds}$ |            | $V_{acc}$  | $\Delta_{odds}$ |
| Base            | 92.85±0.49 | 2.30±0.97  | 4.81±0.69       | 74.49±0.83 | 5.79±3.49  | 9.90±1.2        |
| Laftr           | 93.24±0.41 | 1.19±0.46  | 2.44±0.51       | 74.35±1.46 | 6.92±0.72  | 9.79±1.54       |
| CFair           | 92.51±0.22 | 1.76±0.53  | 4.75±0.85       | 73.53±0.89 | 7.51±0.73  | 7.26±1.95       |
| Laftr+DANN      | 91.33±0.08 | 2.12±1.72  | 2.70±0.67       | 74.28±1.63 | 6.25±2.59  | 8.27±2.11       |
| CFair+DANN      | 90.89±0.76 | 2.01±0.70  | 4.43±1.36       | 74.62±1.06 | 6.23±0.90  | 5.26±2.03       |
| Laftr+FixMatch  | 96.62±0.06 | 0.77±0.21  | 2.23±0.44       | 83.87±0.48 | 8.21±0.67  | 9.32±1.01       |
| CFair+FixMatch  | 96.13±0.53 | 1.28±0.53  | 2.78±0.74       | 83.11±0.49 | 7.87±1.86  | 7.89±0.40       |
| Ours (w/ Laftr) | 96.08±0.07 | 0.96±0.39  | 2.59±0.35       | 85.52±0.40 | 2.82±0.87  | 5.70±0.52       |
| Ours (w/ CFair) | 95.65±0.22 | 1.56±0.37  | 3.85±0.97       | 84.48±0.42 | 2.88±0.99  | 5.43±0.65       |

Q&A?