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Introduction

1. Ranking problem

2. Ranking problem with fairness constraints (Fair-ranking problem)

3. Ranking problem with fairness constraints, but groups are random

variables (Ranking problem with noisy attributes)
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1. Ranking problem

• Ranking : given m items, one has to select a subset of n items and

output a permutation of the selected items. This permutation is said

to be a ranking. We denote rankings by assignment matrices:

R ∈ {0, 1}m×n

where Rij = 1 indicates that item i appears in position j , and Rij = 0

indicates otherwise.

• Utility : given an m × n matrix W , such that placing the i-th item

at the j-th position generates utility Wij .

• The utility of a ranking is the sum of utilities generated by each

item in its assigned position. In this notation, the utility of a ranking

is

⟨R,W ⟩ :=
m∑
i=1

n∑
j=1

RijWij
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1. Ranking problem

• Ranking problem : to solve

maxR∈R ⟨R,W ⟩

where R is the set of all assignment matrices denoting a ranking:

R :=
{
X ∈ {0, 1}m×n : ∀i ∈ [m],

n∑
j=1

Xij ≤ 1, ∀j ∈ [n],
m∑
i=1

Xij = 1
}

Here, the constraint
∑m

i=1 Xij = 1 ensures position j has exactly one

item and the constraint
∑n

j=1 Xij ≤ 1 ensures that item i occupies at

most one position.

• The algorithmic task in the ranking problem is to output a ranking

with the highest utility.
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2. Fair-ranking problem

• Assumptions : with p ≥ 2 socially-salient groups

G1,G2, · · · ,Gp ⊆ [m] (e.g., the group of all women or all Black

people) which are often protected by law. Each of the m items

belongs to one or more of these socially-salient groups.

• Fair-ranking problem : to output the ranking with maximum utility

subject to satisfying certain fairness criteria with respect to these

groups.

Definition 3.1 (Fairness constraints). Given a matrix U ∈ Zn×p
+ , a

ranking R satisfies the upper bound constraint if
∑

i∈Gℓ

∑k
j=1 Rij ≤ Ukℓ,

for all ℓ ∈ [p] and k ∈ [n].
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3. Ranking problem with noisy attributes

Definition 3.2 (Noise model). Let P ∈ [0, 1]m×p be a known matrix.

The groups G1, · · · ,Gp ⊆ [m] are random variables, such that, for each

i ∈ [m] and ℓ ∈ [p],Pr [Gℓ ∋ i ] = Piℓ. Moreover, for different items i ̸= j

the events Gℓ ∋ i and Gk ∋ j are independent for all ℓ, k ∈ [p].
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3. Ranking problem with noisy attributes

Definition 3.4 ((ϵ, δ)-constraint). For any ϵ ∈ Rn ≥ 0 and δ ∈ (0, 1], a

ranking R is said to satisfy (ϵ, δ)-constraint if with probability at least

1− δ over the draw of G1, · · · ,Gp,

∀k ∈ [n], ∀ℓ ∈ [p],
∑
i∈Gℓ

k∑
j=1

Rij ≤ Ukℓ(1 + ϵk).

Problem 3.5 (Ranking problem with noisy attributes). Given

matrices P, U, and W , find the ranking R such that, for some small ϵ

and δ,

maxR∈R⟨R,W ⟩ s.t. R satisties (ϵ, δ)− constraint.

• Note that solving Problem 3.5 is NP-hard.
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Optimization framework

• Input: Matrices P ∈ [0, 1]m×p,W ∈ Rm×n
≥0 ,U ∈ Rn×p

• Parameters: Constant c > 1, failure probability δ ∈ (0, 1], and

k ∈ [n], relaxation parameter

γk := 12 · log
(
2np

δ

)
·max
ℓ∈[p]

√
1

Ukℓ
(1)

• Our Fair-Ranking Program (2) :

max
R∈R

⟨R,W ⟩, (Noise Resilient)

s.t. ∀ℓ ∈ [p] ∀k ∈ [n]∑
i∈[m],
j∈[k]

PiℓRij ≤ Ukℓ

(
1 +

(
1− 1

2
√
c

)
γk

)
.
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Fairness and utility of optimal solution

Theorem 4.1 Let γ ∈ Rn be as defined in Equation (1). There is an

optimization program (Program (2)), parameterized by a constant c and

failure probability δ, such that for any c > 1 and δ ∈ (0, 1
2 ] its optimal

solution satisfies (cγ, δ)-constraint and has a utility at least as large as

the utility of any ranking satisfying ((c −
√
c)γ, δ)-constraint.

• Note that solving Program (2) is a polynomial complexity.

9



Lower bound on fairness guarantee

Theorem 4.2 There is a family of matrices U ∈ Zn×p
+ such that for any

U in the family and any parameters δ ∈ [0, 1) and ϵ1, · · · , ϵn ≥ 0, if for

any position k ∈ [n], ϵk ≤ 1 and ϵk < maxℓ∈[p]

√
1

2Ukℓ
log 1

4δ then there

exists a matrix P ∈ [0, 1]m×p , such that it is information theoretically

impossible to output a ranking that satisfies (ϵ, δ)-constraint.

• Since γk is O
(
log

(
np
δ

)
·maxℓ

√
1

Ukℓ

)
, Theorem 4.2 shows that

Theorem 4.1’s fairness guarantee is optimal up to log-factors.
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