Fair and Efficient Allocations Without Obvious Manipulations

Alexandros Psomasa and Paritosh Verma

Reviewer : Hwichang Jeong

January 30, 2023

Seoul National University

Outline

1 Contribution

3 Efficiency

5 Not obvious Manipulable

6 Theorem

7 Mechanism

1 Contribution

2 Allocation Problem

3 Efficiency

4 Fairness

5 Not obvious Manipulable

6 Theorem

7 Mechanis

• Suggest fractionally Pareto efficient, EF1, NOM allocation mechanism that runs in pseudo-polynomial time.

- Consider the problem of allocating *m* items to *n* agents.
- A fractional allocation A ∈ [0, 1]^{n×m} is a matrix that A_{ij} is the fraction of the item j that the agent i receives.
- An integral allocation is $A \in \{0,1\}^{n \times m}$.
- A = (A₁, · · · , A_n)^T where A_i = (A_{i1}, · · · , A_{im}) ∈ [0, 1]^m denotes the fraction of all items allocated to agent *i*.

- *M* : set of items, *N* : set of agents.
- Each agent *i* ∈ *N* has a private valuation function v_i(·) that outputs the utility that agent *i* derives from a set of items.
- Utility of agent *i* for an allocation A is $v_i(A_i) = \sum_{i \in M} A_{ij}v_{ij}$.

- A mechanism *M* uses reported valuations *b* = (*b*₁,..., *b_n*) from every agent *i* ∈ *N* and outputs a feasible allocation.
- Deterministic mechanism *M* is function outputs an integral allocation based on reported valuations b = (b₁, · · · , b_n)^T.

$$\mathcal{M}(b) = (\mathcal{M}_1(b), \cdots, \mathcal{M}_n(b))^T$$

3 Efficiency

(5)

 An allocation A is fractionally Pareto efficient (or fPO) iff there is no fractional allocation A' such that for all agents i ∈ N,

$$v_i(A_i^{'}) \geq v_i(A_i)$$

and for at least one agent this inequality is strict.

 An allocation A is α-approximately fractionally Pareto efficient (or α fPO) iff there is no fractional allocation A' such that for all agents i ∈ N,

$$\alpha \mathsf{v}_i(A_i^{'}) \geq \mathsf{v}_i(A_i)$$

and for at least one agent this inequality is strict.

• An allocation A is envy-free (EF) if for every pair of agent $i, i' \in N$,

$$\mathsf{v}_i(A_i) \geq \mathsf{v}_i(A_{i'})$$

- Achieving envy-freeness is impossible for integral allocations.
- An integral allocation A is envy-free up to one item (EF1) if for every pair of agent i, i' ∈ N, where A_j ≠ Ø,

$$\mathsf{v}_i(A_i) \geq \mathsf{v}_i(A_{i'} \setminus \{g\})$$

for some item $g \in A_{i'}$.

4

5 Not obvious Manipulable

Incentive Compatibility

- A mechanism is called incentive compatible if every agents can achieve the best outcome to themselves just by acting to their private valuation.
- A mechanism is not obvious Manipulable(NOM) if every agent *i* ∈ *N* with private valuation v_i, and every possible report b_i of agent *i*

$$\min_{\mathbf{v}_{-i}} \mathbf{v}_i(\mathcal{M}_i(\mathbf{v}_i,\mathbf{v}_{-i})) \geq \min_{\mathbf{v}_{-i}} \mathbf{v}_i(\mathcal{M}_i(\mathbf{b}_i,\mathbf{v}_{-i}))$$

$$\max_{\mathsf{v}_{-i}}\mathsf{v}_i(\mathcal{M}_i(\mathsf{v}_i,\mathsf{v}_{-i})) \geq \max_{\mathsf{v}_{-i}}\mathsf{v}_i(\mathcal{M}_i(\mathsf{b}_i,\mathsf{v}_{-i}))$$

where v_{-i} are reports of the other agents.

• Intuitively, if a mechanism is NOM then an agent cannot increase her worst-case utility or her best-case utility by misreporting her valuation.

1 Contribution

2 Allocation Problem

3 Efficiency

4 Fairness

6 Theorem

Mechanism

• Jugal and Aniket suggest a pseudo-polynomial time deterministic allocation that fPO and EF1.

Theorem

There exists a black-box reduction, which preserves fPO, from the problem of designing a NOM and EF1 mechanism to designing an algorithm that computes clean and non-wasteful and EF1 algorithm.

- An allocation A is non-wasteful iff for each i ∈ N, v_{ij} = 0 for every unallocated item j ∈ M \ ∪_{k∈N}A_k
- An allocation A is clean if for each i ∈ N, v_i(g) > 0 for all g ∈ A_i.

1 Contribution

2 Allocation Problem

3 Efficiency

4 Fairness

5 Not obvious Manipulable

6 Theorem

 For each agent *i* ∈ *N*, let *D_i* be the set of items that have strictly positive reported value for *i*

$$D_i = \{j \in M | b_{ij} > 0\}$$

- Let $\hat{D}_i = M \setminus \cup_{i' \neq i} D_{i'}$
- Let *R_i* be the indicator for the event that the subsets {*D_{i'}*}_{*i'*∈*N*} \ {*D_i*} are pairwise disjoint.

- Let \mathcal{M}^* be Clean and non-wasteful fPO and EF1 mechanism.
- Suggest mechanism 1 considers sequentially four cases.

Case I: The sets $\{D_i\}_{i=1}^n$ are pairwise disjoint.

• Allocate the D_i to agent i for each agent $i \in \mathbb{N}$.

Case II: $R_i = 1$ for exactly one agent $i \in N$.

- This can occur if D_i intersects with two or more $D_{i'}$ s
- Allocate the \hat{D}_i to agent *i*, and the $D_{i'}$ to each agent $i' \in N$, for each $i' \neq i$ if it results in an EF1 allocation.
- Otherwise, allocation returned by the \mathcal{M}^{\ast} for the given valuation profile.

Case III: There are exactly two agents $i, i' \in \mathbb{N}$ such that $R_i = R_{i'} = 1$.

- The only way this is possible is if D_i, D_i' intersect each other and any other pair of subsets D_k, D_l where {k, l} ≠ {i, i'}, are disjoint.
- Mechanism 1 considers whether the set of goods D_i ∩ D_j are valued more by agent *i* or agent *j*; each of these two subcases are similar to Case II

Case IV: None of the previous cases holds (equivalently, $R_i = 0$ for all $i \in N$).

• Allocate returned by the \mathcal{M}^\ast for the given valuation profile.