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Introduction

» Bias mitigation algorithm can be categorized into pre-processing,
in-processing, and post-processing approaches.

» Pre-processing and in-processing often require retraining a model from
scratch and can be intractable in many real-world situation.

= Post-processing approaches are the only viable option in such cases.

» Contribution:
1) Developing a post-processing fairness algorithm that improves the fairness
characteristics of a pre-trained model without requiring it to be refit.

2) Developing IHVP-WoodFisher, a WoodFisher based on Inverse-Hessian
Vector Product(IHVP) scheme for computing the fairness influence score.



Preliminaries



» Dataset: D = {z, = (Xn,Sn,Vn)}h_,
- Xp € RP: feature
- sp €[0,1,---,R] : sensitive attribute
- Yn € Y :response

» Parameter: 8 € ©® C R’

» Model: he(xn) € Y

» loss function/: @ x Y — R



Empirical and Weighted Risk Minimization

» Weighted risk minimization problem
o letw = [wi,wy, -, wy]" € RY be weights vector.

e Then 8(w) = argmin SN wal(he(xn), Yn)
6co

o Setting all the weights to one, 1 [wy = L, w, = 1,--- ,wy = 1],
then 8(1) = 8 = argmin SN £(he(Xn), yn).
0co

It recovers the standard empirical risk minimization problem.



First-Order Taylor Approximation

~

» Since 6(w) is a function of the weights w, we can form a first-order Taylor
approximation to it about 1:

O(w) =0+ Vub(w)| (w—1)+

w=1

» This first order Taylor approximation is often referred to as the Infinitesimal
Jackknife Approximation.



First-Order Taylor Approximation

» When @ is a stationary point of + S ¢(he(xn), vn) £ L(6),

dé(w)

. —1
dw, =—H gn

w=1

where H & VéL(G)) 5 and gn & Vol (vn, ho (xn))‘aﬁ

» To measure the influence of training instance on a differentiable functional,
M(8(w), w), of 8(w), apply chain rule to arrive at,
T, & dm(e(w), w)

H—1
de w=1 gn

= — VgM(8(w), w)

w=1




Fair Classification through Post-Hoc
Interventions




Fair Classification through Post-Hoc Interventions

» Develop : Post-processing fairness algorithm

» Given:
(1) a pre-trained model Bpre
(2) access to the training data and a validation set

(3) atwice differentiable loss function and a once differentiable surrogate to the
fairness metric

(4) an invertible Hessian at a local optimum of the loss



Fair Classification

» Two common fairness metrics
1. Demographic parity(DP)
- ADP(6) = [P(he(X) =1|S=1) = P(he(X) =1 S = 0)]

2. Equality of odds(EO)
- AEO(0) = |P(he(X) = 1] S=1,Y=y) = P(he(X) = 1] S = 0,¥ = )|

» Smooth surrogate to ADP and AEO
- MEPP (8) = [Epppxis= [0 ()] — Eppy poxis=o) [ ()]

- MBEO(6) = T |y proxiso,1=y) 110 (0] = Eppy eoxis=1, iy (o (]



Influence Functions for Group Fairness

» Assume : use a held-out validation set Dyy = {xn,sn,yn}gvvgL

» Influence function for group fairness:

e 0N ADP
IAaDP,n = —VgMng(é)THqgn
e on AEO

ABO 41T, —1
Ipgo.n = —VgMp  (6) H™ gn



Post-Hoc Mitigation

» Post-hoc improvement of pre-trained 0

N
n def ~ o de(w Fair
efair :e (] (Wfair) =0 + Z dV(Vn) (W; - 1) 5
n=1 w=1
~ N .
=6-> H'g, (Wﬁ"“ - 1)
n=1
» By searching for a weight vector wy,;, = Wi, Wi’ ... wi"" € R such that

optimizing /\/l%m((g(w),w) with respect to w, b = ADP or AEO

» However, optimizing M(@(w), w) without any constraint on w will likely result
in fair but inaccurate classifier, and the optimized weights will typically not
be interpretable.

» Circumventing these issues by constraining the elements of w to be binary.



Post-Hoc Mitigation

> Let Mbpvat( (w),w) be a linearized approximation to M%Va( (w),w) about 1

Let Weair € {0,1}" be a N dimensional binary vector such that its n' coordinate
is W =1—1[Zy, > 0], then,

Wor = argmin M3 (B(w),w) — M3 (6(1),1),
we{0,1}N

and MbDva, (é\(wfa/‘r)7 Wfa[r) - MbDva[ (§(1)7 1) < 0

» It follows that M3, _ (8(Wrir), Weair) =< M3, (8(1),1)

» Define D_ = {z,] z, € Dand Imn > 0}
= efa\r - 0+ ZmeD H™ gm



Compute Hessian-Vector Product(HVP)

» In this paper, they develop an alternative iterative procedure based on the
recently proposed WoodFisher approximation.

» WoodFisher approximation

A —h - Hy "Vl (Vos1, ho (Xni1)) VeAf Vi1, he (Xna)) T Hy'!
N + Vol (Vos1, ho (Xn1)) T He Vol (Vosr, ho (Xns1))

n+1

with ﬁo‘1 = A""lp, and X a small positive scalar.



Compute Hessian-Vector Product(HVP)

» IHVP-WoodFisher approximation
= purpose : H™'v

Let 01 = V¢l (z1) ,R1 = v, and N denote the number of training instances. The
Hessian-vector product H='v is approximated by iterating through the
IHVP-WoodFisher recurrence in under equation and computing Ry.

0n Vol (Zn-M)T On 0, Vol (Zn-M)T Rn
N + Vol (z011) " 0n N + Vol (z011) " 0n

where, we use £(z,11) as shorthand for £ (Yn+1, he (Xn+1)).

) an: n —

On+1 = 0p —
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Tabular Datasets

1. Adult dataset

® Task: to predict if a person has an income above a threshold
® Sensitive attribute : Gender € [Female, Male]
® Response : Income € ['<=50k/, '>50k’]

2. ACSPublicCoverage dataset
® Task: to predict whether an individual is covered by public health
insuarance
® Sensitive attribute : Race € [white, black]
® Response : PUBCOV(Public health coverage) € [0,1]



Algorithm 1 Fair-IJ

1:

11:
12:

Input: Pre-trained model parameters é, training set D, loss function ¢, a validation set D,,; and
a smooth surrogate to the fairness metric b € {ADP, AEO}, M{’)ml.

: Calculate: VM (6, 1) using Equation 7 or Equation 8.
: Calculate: 7 = H~'VgM (8, 1) by setting k; = VM (6, 1) and iterating through Equation 14

for B iterations.

: Calculate: the fairness influence 7, ,, of each training instance z,, on Dy, by computing dot

product between g,, and .

: Construct: the set D_ and denote its cardinality, |[D_| = K
- Tnitialize: 0, :=
cforkel[l,...,K]do

Construct: D = {z, € D_ | T, > T} (k1) }, where Ty ;) denotes the (K — k)™
order statistic of the influence scores [Zp.1, . . . , Zp k).
Calculate: 8% by replacing D_ with using D* in Equation 12.

fair
by, (65,) < bp,, (0F-1) set Oy, := OF, else set Oy, := OF

loop.

end for -

Return: fair model parameters Q.

i 1 and break out of the for
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» Accuracy and fairness Pareto frontier for the Adult and the Coverage datasets
averaged over 10 runs.

» Points closer to the bottom-left achieve the best fairness/accuracy trade-off.
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