Fair Infinitesimal Jackknife: Mitigating the influence of biased training data points without refitting

Neurips 2022

SeHyun Park January 30, 2023

Seoul National University

3 Fair Classification through Post-Hoc Interventions

Introduction

- Bias mitigation algorithm can be categorized into pre-processing, in-processing, and post-processing approaches.
- Pre-processing and in-processing often require retraining a model from scratch and can be intractable in many real-world situation.
- \Rightarrow Post-processing approaches are the only viable option in such cases.
- ► Contribution:
 - 1) Developing a post-processing fairness algorithm that improves the fairness characteristics of a pre-trained model without requiring it to be refit.
 - 2) Developing IHVP-WoodFisher, a WoodFisher based on Inverse-Hessian Vector Product(IHVP) scheme for computing the fairness influence score.

Preliminaries

Notations

► Data set :
$$\mathcal{D} = \{\mathbf{z}_n = (\mathbf{x}_n, s_n, y_n)\}_{n=1}^N$$

- $\mathbf{x}_n \in \mathbb{R}^p$: feature
- $s_n \in [0, 1, \dots, k]$: sensitive attribute
- $\mathbf{y}_n \in \mathcal{Y}$: response

- ▶ Parameter : $\theta \in \Theta \subseteq \mathbb{R}^{D}$
- ▶ Model : $h_{\theta}(\mathbf{x}_n) \in \mathcal{Y}$
- ▶ loss function $\ell : \Theta \times \mathcal{Y} \to \mathbb{R}$

- ▶ Weighted risk minimization problem
 - Let $\mathbf{w} = [w_1, w_2, \cdots, w_N]^T \in \mathbb{R}^N$ be weights vector.

• Then
$$\widehat{\theta}(\mathbf{w}) = \underset{\theta \in \Theta}{\operatorname{argmin}} \frac{1}{N} \sum_{n=1}^{N} w_n \ell(h_{\theta}(x_n), y_n)$$

• Setting all the weights to one, $\mathbf{1} \stackrel{\text{def}}{=} [w_1 = 1, w_2 = 1, \cdots, w_N = 1]^T$, then $\widehat{\boldsymbol{\theta}}(\mathbf{1}) = \widehat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta} \in \Theta}{\operatorname{argmin}} \frac{1}{N} \sum_{n=1}^N \ell(h_{\boldsymbol{\theta}}(x_n), y_n).$ It recovers the standard empirical risk minimization problem. Since $\hat{\theta}(w)$ is a function of the weights w, we can form a first-order Taylor approximation to it about 1:

$$\widehat{\boldsymbol{\theta}}(\mathbf{w}) = \widehat{\boldsymbol{\theta}} + \nabla_{\mathbf{w}} \widehat{\boldsymbol{\theta}}(\mathbf{w}) \Big|_{\mathbf{w}=1} (\mathbf{w}-1) + \mathcal{O}\left((\mathbf{w}-1)^2 \right)$$

This first order Taylor approximation is often referred to as the Infinitesimal Jackknife Approximation. ▶ When $\hat{\theta}$ is a stationary point of $\frac{1}{N} \sum_{n=1}^{N} \ell(h_{\theta}(x_n), y_n) \stackrel{let}{=} L(\theta)$,

$$\left.\frac{d\widehat{\boldsymbol{\theta}}(\mathbf{w})}{dw_n}\right|_{\mathbf{w}=1} = -H^{-1}g_n$$

where
$$H \stackrel{\text{def}}{=} \nabla_{\boldsymbol{\theta}}^2 L(\boldsymbol{\theta}) \Big|_{\boldsymbol{\theta} = \widehat{\boldsymbol{\theta}}}$$
, and $g_n \stackrel{\text{def}}{=} \nabla_{\boldsymbol{\theta}} \ell(y_n, h_{\boldsymbol{\theta}}(\mathbf{x}_n)) \Big|_{\boldsymbol{\theta} = \widehat{\boldsymbol{\theta}}}$

► To measure the influence of training instance on a differentiable functional, $M(\hat{\theta}(\mathbf{w}), \mathbf{w})$, of $\hat{\theta}(\mathbf{w})$, apply chain rule to arrive at,

$$\mathcal{I}_{M,n} \stackrel{\text{def}}{=} \left. \frac{dM(\widehat{\theta}(\mathbf{w}), \mathbf{w})}{dW_n} \right|_{\mathbf{w}=1} = -\nabla_{\widehat{\theta}} M(\widehat{\theta}(\mathbf{w}), \mathbf{w}) \Big|_{\mathbf{w}=1}^T H^{-1} g_n$$

Fair Classification through Post-Hoc Interventions

- ▶ Develop : Post-processing fairness algorithm
- ► Given :
 - (1) a pre-trained model $\widehat{oldsymbol{ heta}}_{pre}$
 - (2) access to the training data and a validation set
 - (3) a twice differentiable loss function and a once differentiable surrogate to the fairness metric
 - (4) an invertible Hessian at a local optimum of the loss

- ▶ Two common fairness metrics
 - 1. Demographic parity(DP)
 - $\Delta DP(\boldsymbol{\theta}) = |P(h_{\boldsymbol{\theta}}(X) = 1 | S = 1) P(h_{\boldsymbol{\theta}}(X) = 1 | S = 0)|$
 - 2. Equality of odds(EO)

- $\Delta \text{EO}(\boldsymbol{\theta}) = \sum_{y} |P(h_{\boldsymbol{\theta}}(X) = 1 | S = 1, Y = y) - P(h_{\boldsymbol{\theta}}(X) = 1 | S = 0, Y = y)|$

 $\blacktriangleright\,$ Smooth surrogate to $\Delta {\rm DP}$ and $\Delta {\rm EO}$

$$\begin{array}{l} - \ M_{\mathcal{D}}^{\Delta \mathrm{DP}}(\boldsymbol{\theta}) = \left| \mathbb{E}_{p_{\mathcal{D}}(X=x|S=1)} \left[h_{\boldsymbol{\theta}}(\mathbf{x}) \right] - \mathbb{E}_{p_{\mathcal{D}}(X=x|S=0)} \left[h_{\boldsymbol{\theta}}(\mathbf{x}) \right] \right| \\ - \ M_{\mathcal{D}}^{\Delta \mathrm{EO}}(\boldsymbol{\theta}) = \sum_{\mathbf{y}} \left| \mathbb{E}_{p_{\mathcal{D}}(X=x|S=0,Y=y)} \left[h_{\boldsymbol{\theta}}(\mathbf{x}) \right] - \mathbb{E}_{p_{\mathcal{D}}(X=x|S=1,Y=y)} \left[h_{\boldsymbol{\theta}}(\mathbf{x}) \right] \right| \end{aligned}$$

- ► Assume : use a held-out validation set $\mathcal{D}_{val} = {\mathbf{x}_n, \mathbf{s}_n, y_n}_{n=1}^{N_{val}}$
- ► Influence function for group fairness :
 - \bullet on $\Delta \mathrm{DP}$

$$\mathcal{I}_{\Delta DP,n} = -\nabla_{\widehat{\boldsymbol{\theta}}} M_{\mathcal{D}_{val}}^{\Delta DP} (\widehat{\boldsymbol{\theta}})^T H^{-1} g_n$$

 \bullet on $\Delta {\rm EO}$

$$\mathcal{I}_{\Delta \mathrm{EO},n} = -\nabla_{\widehat{\boldsymbol{\theta}}} M_{\mathcal{D}_{\mathrm{val}}}^{\Delta \mathrm{EO}} (\widehat{\boldsymbol{\theta}})^{\mathrm{T}} H^{-1} g_{n}$$

▶ Post-hoc improvement of pre-trained $\widehat{\theta}$

$$\widehat{\boldsymbol{\theta}}_{\text{fair}} \stackrel{\text{def}}{=} \widehat{\boldsymbol{\theta}} \left(\mathbf{w}_{\text{fair}} \right) = \widehat{\boldsymbol{\theta}} + \sum_{n=1}^{N} \left. \frac{d \boldsymbol{\theta}(\mathbf{w})}{d w_n} \right|_{\mathbf{w}=1} \left(w_n^{\text{fair}} - 1 \right),$$

$$= \widehat{\boldsymbol{\theta}} - \sum_{n=1}^{N} H^{-1} g_n \left(w_n^{\text{fair}} - 1 \right)$$

- ► By searching for a weight vector $\mathbf{w}_{fair} = [w_1^{fair}, w_2^{fair}, \cdots, w_N^{fair}]^T \in \mathbb{R}^N$ such that optimizing $M_{\mathcal{D}_{val}}^b(\widehat{\boldsymbol{\theta}}(\mathbf{w}), \mathbf{w})$ with respect to $\mathbf{w}, b = \Delta DP$ or ΔEO
- ► However, optimizing $M(\hat{\theta}(\mathbf{w}), \mathbf{w})$ without any constraint on \mathbf{w} will likely result in fair but inaccurate classifier, and the optimized weights will typically not be interpretable.
- ► Circumventing these issues by constraining the elements of **w** to be binary.

► Let $\overline{M}^{b}_{\mathcal{D}_{val}}(\widehat{\theta}(w), w)$ be a linearized approximation to $M^{b}_{\mathcal{D}_{val}}(\widehat{\theta}(w), w)$ about 1

Proposition

Let $\mathbf{w}_{fair} \in \{0, 1\}^N$ be a N dimensional binary vector such that its n^{th} coordinate is $w_n^{fair} = 1 - \mathbb{I}[\mathcal{I}_{b,n} > 0]$, then,

$$\begin{split} & \textbf{w}_{fair} = \underset{\textbf{w} \in \{0,1\}^{N}}{\text{argmin}} \bar{M}^{b}_{\mathcal{D}_{val}}\left(\widehat{\boldsymbol{\theta}}(\textbf{w}),\textbf{w}\right) - M^{b}_{\mathcal{D}_{val}}\left(\widehat{\boldsymbol{\theta}}(1),1\right), \\ & \text{and } \bar{M}^{b}_{\mathcal{D}_{val}}\left(\widehat{\boldsymbol{\theta}}(\textbf{w}_{fair}),\textbf{w}_{fair}\right) - M^{b}_{\mathcal{D}_{val}}\left(\widehat{\boldsymbol{\theta}}(1),1\right) \leq 0 \end{split}$$

► It follows that $M^{b}_{\mathcal{D}_{val}}(\widehat{\theta}(\mathbf{w}_{fair}), \mathbf{w}_{fair}) \approx \leq M^{b}_{\mathcal{D}_{val}}(\widehat{\theta}(1), 1)$

► Define
$$\mathcal{D}_{-} = \{\mathbf{z}_n | \mathbf{z}_n \in \mathcal{D} \text{ and } \mathcal{I}_{M,n} > 0\}$$

⇒ $\widehat{\theta}_{\text{fair}} = \widehat{\theta} + \sum_{m \in \mathcal{D}_{-}} H^{-1}g_m$

- ► In this paper, they develop an alternative iterative procedure based on the recently proposed WoodFisher approximation.
- ► WoodFisher approximation

$$\widehat{H}_{n+1}^{-1} = \widehat{H}_n^{-1} - \frac{\widehat{H}_n^{-1} \nabla_{\theta} \ell (y_{n+1}, h_{\theta} (\mathbf{x}_{n+1})) \nabla_{\theta} \ell (y_{n+1}, h_{\theta} (\mathbf{x}_{n+1}))^{\top} \widehat{H}_n^{-1}}{N + \nabla_{\theta} \ell (y_{n+1}, h_{\theta} (\mathbf{x}_{n+1}))^{\top} \widehat{H}_n^{-1} \nabla_{\theta} \ell (y_{n+1}, h_{\theta} (\mathbf{x}_{n+1}))}$$

with $\hat{H}_0^{-1} = \lambda^{-1} I_D$, and λ a small positive scalar.

► IHVP-WoodFisher approximation

 \Rightarrow purpose : H^{-1} **v**

Proposition

Let $\mathbf{o}_1 = \nabla_{\theta} \ell(\mathbf{z}_1), \mathbf{k}_1 = \mathbf{v}$, and N denote the number of training instances. The Hessian-vector product $H^{-1}\mathbf{v}$ is approximated by iterating through the IHVP-WoodFisher recurrence in under equation and computing \mathbf{k}_N .

$$\mathbf{o}_{n+1} = \mathbf{o}_n - \frac{\mathbf{o}_n \nabla_{\theta} \ell (\mathbf{z}_{n+1})^{\top} \mathbf{o}_n}{N + \nabla_{\theta} \ell (\mathbf{z}_{n+1})^{\top} \mathbf{o}_n}, \quad \mathbf{k}_{n+1} = \mathbf{k}_n - \frac{\mathbf{o}_n \nabla_{\theta} \ell (\mathbf{z}_{n+1})^{\top} \mathbf{k}_n}{N + \nabla_{\theta} \ell (\mathbf{z}_{n+1})^{\top} \mathbf{o}_n}$$

where, we use ℓ (z_{n+1}) as shorthand for ℓ (y_{n+1} , h_{θ} (x_{n+1})).

Experiment

1. Adult dataset

- Task : to predict if a person has an income above a threshold
- Sensitive attribute : $Gender \in [Female, Male]$
- Response : **Income** ∈ ['<=50k', '>50k']

2. ACSPublicCoverage dataset

- Task : to predict whether an individual is covered by public health insuarance
- Sensitive attribute : $Race \in [white, black]$
- Response : **PUBCOV**(Public health coverage) $\in [0, 1]$

Algorithm

Algorithm 1 Fair-IJ

- 1: Input: Pre-trained model parameters $\hat{\theta}$, training set \mathcal{D} , loss function ℓ , a validation set \mathcal{D}_{val} and a smooth surrogate to the fairness metric $b \in \{\Delta DP, \Delta EO\}, M^b_{\mathcal{D}_{val}}$.
- 2: **Calculate:** $\nabla_{\theta} M(\hat{\theta}, 1)$ using Equation 7 or Equation 8.
- Calculate: r = H⁻¹∇_θM(θ̂, 1) by setting k₁ = ∇_θM(θ̂, 1) and iterating through Equation 14 for B iterations.
- 4: **Calculate:** the fairness influence $\mathcal{I}_{b,n}$ of each training instance \mathbf{z}_n on \mathcal{D}_{val} by computing dot product between g_n and r.
- 5: Construct: the set \mathcal{D}_{-} and denote its cardinality, $|\mathcal{D}_{-}| = K$.
- 6: Initialize: $\hat{\theta}_{\text{fair}}^0 := \hat{\theta}$
- 7: for $k \in [1, ..., K]$ do
- 8: **Construct:** $\mathcal{D}_{-}^{k} = \{\mathbf{z}_{n} \in \mathcal{D}_{-} \mid \mathcal{I}_{b,n} > \mathcal{I}_{b,(K-k)}\},$ where $\mathcal{I}_{b,(K-k)}$ denotes the $(K-k)^{\text{th}}$ order statistic of the influence scores $[\mathcal{I}_{b,1}, \ldots, \mathcal{I}_{b,K}].$
- 9: **Calculate:** $\hat{\theta}_{\text{fair}}^k$ by replacing \mathcal{D}_- with using \mathcal{D}_-^k in Equation 12.
- 10: If $b_{\mathcal{D}_{val}}(\hat{\theta}_{fair}^k) < b_{\mathcal{D}_{val}}(\hat{\theta}_{fair}^{k-1})$ set $\hat{\theta}_{fair} := \hat{\theta}_{fair}^k$ else set $\hat{\theta}_{fair} := \hat{\theta}_{fair}^{k-1}$ and break out of the for loop.
- 11: end for
- 12: **Return:** fair model parameters $\hat{\theta}_{\text{fair}}$.

Result

► Accuracy and fairness Pareto frontier for the Adult and the Coverage datasets averaged over 10 runs.

▶ Points closer to the bottom-left achieve the best fairness/accuracy trade-off.

End