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Introduction



Introduction

▶ Bias mitigation algorithm can be categorized into pre-processing,
in-processing, and post-processing approaches.

▶ Pre-processing and in-processing often require retraining a model from
scratch and can be intractable in many real-world situation.

⇒ Post-processing approaches are the only viable option in such cases.

▶ Contribution:

1) Developing a post-processing fairness algorithm that improves the fairness
characteristics of a pre-trained model without requiring it to be refit.

2) Developing IHVP-WoodFisher, a WoodFisher based on Inverse-Hessian
Vector Product(IHVP) scheme for computing the fairness influence score.
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Preliminaries



Notations

▶ Data set : D = {zn = (xn, sn, yn)}Nn=1
- xn ∈ Rp : feature
- sn ∈ [0, 1, · · · , k] : sensitive attribute
- yn ∈ Y : response

▶ Parameter : θ ∈ Θ ⊆ RD

▶ Model : hθ(xn) ∈ Y

▶ loss function ℓ : Θ× Y → R
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Empirical and Weighted Risk Minimization

▶ Weighted risk minimization problem

• Let w = [w1,w2, · · · ,wN]T ∈ RN be weights vector.

• Then θ̂(w) = argmin
θ∈Θ

1
N
∑N

n=1 wnℓ(hθ(xn), yn)

• Setting all the weights to one, 1 def= [w1 = 1,w2 = 1, · · · ,wN = 1]T,
then θ̂(1) = θ̂ = argmin

θ∈Θ

1
N
∑N

n=1 ℓ(hθ(xn), yn).

It recovers the standard empirical risk minimization problem.
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First-Order Taylor Approximation

▶ Since θ̂(w) is a function of the weights w, we can form a first-order Taylor
approximation to it about 1:

θ̂(w) = θ̂ + ∇wθ̂(w)
∣∣∣
w=1

(w− 1) +O
(
(w− 1)2

)
▶ This first order Taylor approximation is often referred to as the Infinitesimal
Jackknife Approximation.
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First-Order Taylor Approximation

▶ When θ̂ is a stationary point of 1
N
∑N

n=1 ℓ(hθ(xn), yn)
let
= L(θ),

dθ̂(w)
dwn

∣∣∣∣∣
w=1

= −H−1gn

where H def
= ∇2

θL(θ)
∣∣∣
θ=θ̂

, and gn def
= ∇θℓ (yn,hθ (xn))

∣∣∣
θ=θ̂

▶ To measure the influence of training instance on a differentiable functional,
M(θ̂(w),w), of θ̂(w), apply chain rule to arrive at,

IM,n
def
=

dM(θ̂(w),w)
dwn

∣∣∣∣∣
w=1

= −∇θ̂M(θ̂(w),w)
∣∣∣
w=1

T
H−1gn
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Fair Classification through Post-Hoc Interventions

▶ Develop : Post-processing fairness algorithm

▶ Given :

(1) a pre-trained model θ̂pre

(2) access to the training data and a validation set

(3) a twice differentiable loss function and a once differentiable surrogate to the
fairness metric

(4) an invertible Hessian at a local optimum of the loss
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Fair Classification

▶ Two common fairness metrics
1. Demographic parity(DP)
- ∆DP(θ) = |P (hθ(X) = 1 | S = 1) − P (hθ(X) = 1 | S = 0)|

2. Equality of odds(EO)
- ∆EO(θ) = Σ

y
|P (hθ(X) = 1 | S = 1, Y = y) − P (hθ(X) = 1 | S = 0, Y = y)|

▶ Smooth surrogate to ∆DP and ∆EO
- M∆DP

D (θ) =
∣∣∣EpD (X=x|S=1) [hθ(x)] − EpD (X=x|S=0) [hθ(x)]

∣∣∣
- M∆EO

D (θ) = Σ
y

∣∣∣EpD (X=x|S=0,Y=y) [hθ(x)] − EpD (X=x|S=1,Y=y) [hθ(x)]
∣∣∣
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Influence Functions for Group Fairness

▶ Assume : use a held-out validation set Dval = {xn, sn, yn}Nvaln=1

▶ Influence function for group fairness :
• on ∆DP

I∆DP,n = −∇
θ̂
M∆DP
Dval

(θ̂)TH−1gn

• on ∆EO
I∆EO,n = −∇

θ̂
M∆EO
Dval

(θ̂)TH−1gn
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Post-Hoc Mitigation

▶ Post-hoc improvement of pre-trained θ̂

θ̂fair
def
= θ̂ (wfair ) = θ̂ +

N∑
n=1

dθ(w)
dwn

∣∣∣∣∣
w=1

(
wfair
n − 1

)
,

= θ̂ −
N∑
n=1

H−1gn
(
wfair
n − 1

)
▶ By searching for a weight vector wfair = [wfair1 ,wfair2 , · · · ,wfairN ]T ∈ RN such that
optimizing Mb

Dval(θ̂(w),w) with respect to w, b = ∆DP or ∆EO
▶ However, optimizing M(θ̂(w),w) without any constraint on w will likely result
in fair but inaccurate classifier, and the optimized weights will typically not
be interpretable.

▶ Circumventing these issues by constraining the elements of w to be binary.
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Post-Hoc Mitigation

▶ Let Mb
Dval(θ̂(w),w) be a linearized approximation to M

b
Dval(θ̂(w),w) about 1

Proposition
Let wfair ∈ {0, 1}N be a N dimensional binary vector such that its nth coordinate
is wfairn = 1− I [Ib,n > 0], then,

wfair = argmin
w∈{0,1}N

M̄b
Dval (θ̂(w),w)−Mb

Dval (θ̂(1), 1),

and M̄b
Dval

(
θ̂(wfair),wfair

)
−Mb

Dval (θ̂(1), 1) ≤ 0

▶ It follows that Mb
Dval(θ̂(wfair),wfair) ≈≤ Mb

Dval(θ̂(1), 1)

▶ Define D− = {zn| zn ∈ D and IM,n > 0}
⇒ θ̂fair = θ̂ +

∑
m∈D−

H−1gm
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Compute Hessian-Vector Product(HVP)

▶ In this paper, they develop an alternative iterative procedure based on the
recently proposed WoodFisher approximation.

▶ WoodFisher approximation

Ĥ−1
n+1 = Ĥ−1

n − Ĥ−1
n ∇θℓ (yn+1,hθ (xn+1))∇θℓ (yn+1,hθ (xn+1))⊤ Ĥ−1

n

N+∇θℓ (yn+1,hθ (xn+1))⊤ Ĥ−1
n ∇θℓ (yn+1,hθ (xn+1))

with Ĥ−1
0 = λ−1ID, and λ a small positive scalar.
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Compute Hessian-Vector Product(HVP)

▶ IHVP-WoodFisher approximation
⇒ purpose : H−1v

Proposition
Let o1 = ∇θℓ (z1) , k1 = v, and N denote the number of training instances. The
Hessian-vector product H−1v is approximated by iterating through the
IHVP-WoodFisher recurrence in under equation and computing kN.

on+1 = on −
on∇θℓ (zn+1)⊤ on
N+∇θℓ (zn+1)⊤ on

, kn+1 = kn −
on∇θℓ (zn+1)⊤ kn
N+∇θℓ (zn+1)⊤ on

where, we use ℓ (zn+1) as shorthand for ℓ (yn+1,hθ (xn+1)).
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Tabular Datasets

1. Adult dataset

• Task : to predict if a person has an income above a threshold
• Sensitive attribute : Gender ∈ [Female, Male]
• Response : Income ∈ [’<=50k’, ’>50k’]

2. ACSPublicCoverage dataset

• Task : to predict whether an individual is covered by public health
insuarance

• Sensitive attribute : Race ∈ [white, black]
• Response : PUBCOV(Public health coverage) ∈ [0, 1]
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Algorithm
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Result

▶ Accuracy and fairness Pareto frontier for the Adult and the Coverage datasets
averaged over 10 runs.
▶ Points closer to the bottom-left achieve the best fairness/accuracy trade-off.
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End
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