[Review] Learning perturbations to Explain Time Series Predictions

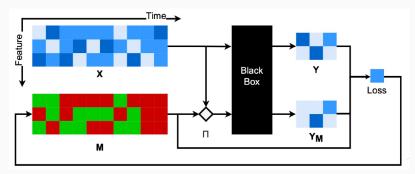
ICML 23 Poster accepted

[Author] Joseph Enguehard

[Reviewer] Chanmoo Park December 19, 2023

Perturbation-based saleincy methods

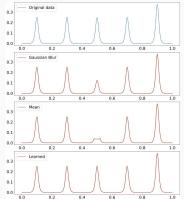
- When the black box model $f: \mathcal{X} \to \mathcal{Y}$ is given, with the mask $m \in [0,1]^{\dim(\mathcal{X})}$ and a perturbation $\Phi(\mathbf{x}, \mathbf{m}): \mathcal{X} \times [0,1]^{\dim(\mathcal{X})} \to \mathcal{X}$ can be trained in two ways...
 - Deletion game (minimum mask with maximum loss)


$$\underset{\mathbf{m}\in[0,1]^n}{\arg\min\lambda}\|\mathbf{1}-\mathbf{m}\|_1 - \mathcal{L}(f(\mathbf{x}), f(\Phi(\mathbf{x},\mathbf{m})))$$

- Preservation game (maximum mask with minimum loss)

 $\underset{\mathbf{m}\in[0,1]^n}{\arg\min\lambda}\|\mathbf{m}\|_1 + \mathcal{L}(f(\mathbf{x}), f(\Phi(\mathbf{x},\mathbf{m})))$

Perturbation methods applied to the time series data


• Crabbé and Van Der Schaar (2021)

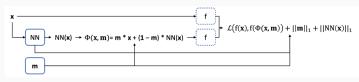
- Considered multivariate (*n*-feature) time series ($t \in [1:T]$) as a $n \times T$ feature matrix and applied Perturbation-based methods
- The explanation on the multivariate time series data:
 - What feature is critical?
 - When it becomes to critical?

Perturbation methods applied to the time series data

• Crabbé and Van Der Schaar (2021) used "Learnable" mask, but "Fixed" Perturbation

• Author pointed out that this fixed perturbation could lead an wrong explanation, since it couldn't consider the long-term dependencies of time-series.

Fixed Perturbation


$$\Phi(\mathbf{x}, \mathbf{m}) = \begin{cases} \mathbf{m} \times \mathbf{x} + (\mathbf{1} - \mathbf{m}) \times \mu_0 & \text{(local mean)} \\ \mathbf{m} \times \mathbf{x} + (\mathbf{1} - \mathbf{m}) \times \nu & \text{(Gaussian noise)} \\ \int g_{\sigma_0 \times (1 - \mathbf{m})} (\mathbf{y} - \mathbf{x}) d\mathbf{y} & \text{(Gaussian blur)} \end{cases}$$

· Learnable Perturbation (Proposed method)

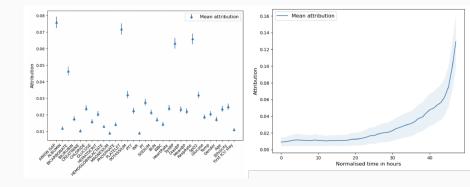
$$\Phi(\mathbf{x}, \mathbf{m}) = \mathbf{m} \times \mathbf{x} + (\mathbf{1} - \mathbf{m}) \times \mathrm{NN}(\mathbf{x})$$

- Neural Net NN(x) : used GRU (Gated Recurrent Unit)
- Learned through the preservation game:

 $\underset{\mathbf{m},\Theta\in\mathrm{NN}}{\arg\min\lambda_1 \|\mathbf{m}\|_1 + \lambda_2 \|\mathrm{NN}(\mathbf{x})\|_1 + \mathcal{L}(f(\mathbf{x}), f(\Phi(\mathbf{x}, \mathbf{m})))}$

Experiment : MIMIC-III dataset (Johnson et al., 2016)

- MIMIC-III dataset
 - Electronic Health Records of more than 60,000 critical care patients.
 - 96 different longitudinal real-valued measurements over a period of 48 hours after patient admission.
 - Task : to predict in-hospital mortality based on 48 hours data at each hour.


Method	Acc↓	Comp ↑	$CE\uparrow$	$Suff\downarrow$
DeepLift	0.988 (0.002)	-4.36E-4 (0.001)	0.097 (0.006)	2.86E-3 (0.001)
DynaMask	0.990 (0.001)	2.21E-4 (0.001)	0.097 (0.005)	2.99E-3 (0.001)
IG	0.988 (0.003)	2.24E-4 (0.002)	0.098 (0.006)	2.21E-3 (0.001)
GradientShap	0.987 (0.004)	-2.19E-3 (0.001)	0.095 (0.006)	3.99E-3 (0.001)
Lime	0.996 (0.001)	-7.36E-4 (0.001)	0.094 (0.005)	3.39E-3 (0.001)
Occlusion	0.988 (0.001)	-1.93E-3 (0.001)	0.095 (0.005)	4.57E-3 (0.001)
Aug Occlusion	0.989 (0.001)	4.59E-4 (0.001)	0.098 (0.005)	1.90E-3 (0.002)
Retain	0.989 (0.001)	-3.79E-3 (0.001)	0.093 (0.005)	7.70E-3 (0.001)
Ours	0.981 (0.004)	1.53E-2 (0.004)	0.118 (0.008)	-1.19E-2 (0.004)

* Acc and CE : 'Accuracy' and 'Cross Entropy change' when salient feature is masked

** Comp(Comprehensiveness) and Suff(Sufficiency) : Softmax prob. changes when salient feature is masked or only salient feature is used

Experiment : MIMIC-III dataset (Johnson et al., 2016)

• Feature-wise, Time-wise importance

