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Perturbation-based saleincy methods

- Fong and Vedaldi (2017)
flute: 0.9973 flute: 0.0007 Learned Mask

- When the black box model f : X — ) is given, with the_ mask
m € [0,1]9M(X) and a perturbation ®(x, m) : X x [0,1]49™*) - x
can be trained in two ways...
- Deletion game (minimum mask with maximum loss)
arg[mi]nk\ll —m| — L(f(x), f(®(x,m)))
me[0,1]™
- Preservation game (maximum mask with minimum loss)

argminA|lm||; + L(f(x), f(®(x, m)))
me[0,1]”



Perturbation methods applied to the time series data

- Crabbé and Van Der Schaar (2021)
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- Considered multivariate (n-feature) time series (¢ € [1: T]) as a
n x T feature matrix and applied Perturbation-based methods
- The explanation on the multivariate time series data:

- What feature is critical?
- When it becomes to critical?



Perturbation methods applied to the time series data

- Crabbé and Van Der Schaar (2021) used "Learnable” mask, but
"Fixed” Perturbation

03 I
02 il I\ I it I
01

/ \ )\ / \ / \
00 P 4\ A A 2k N

—— Gaussian Blur
03
02
01
0.0

- Author pointed out that this fixed perturbation could lead an
wrong explanation, since it couldn’t consider the long-term
dependencies of time-series.



“Learning Perturbation” to Explain Time Series Predictions

- Fixed Perturbation

m xx+ (1 —-m) x yo (local mean)
P(x,m)=¢ mxx+(1—m)xv (Gaussian noise)
J 9oox(1—m)(y —x)dy (Gaussian blur)
- Learnable Perturbation (Proposed method)

P(x,m) =m x x+ (1 — m) x NN(x)

- Neural Net NN(z) : used GRU (Gated Recurrent Unit)
- Learned through the preservation game:

arg min Ay 1 + AolINN()| + £(f(x), f(®(x, m)))
m,0eNN

o

L(fG, (P (x,m)) + [[m]|, + |[NNGO| |,
NN(x) = &(x, m)=m * x+ (1 -m) * NN(x) —




Experiment : MIMIC-I1l dataset (Johnson et al., 2016)

- MIMIC-11l dataset
- Electronic Health Records of more than 60,000 critical care patients.
- 96 different longitudinal real-valued measurements over a period of
48 hours after patient admission.
- Task : to predict in-hospital mortality based on 48 hours data at each

hour.

Method Acc | Comp 1 CE 1t Suff |

DeepLift 0.988 (0.002) -4.36E-4 (0.001) 0.097 (0.006)  2.86E-3 (0.001)
DynaMask 0.990 (0.001)  2.21E-4 (0.001)  0.097 (0.005)  2.99E-3 (0.001)
1G 0.988 (0.003)  2.24E-4 (0.002)  0.098 (0.006)  2.21E-3 (0.001)
GradientShap ~ 0.987 (0.004) -2.19E-3 (0.001)  0.095 (0.006)  3.99E-3 (0.001)
Lime 0.996 (0.001) -7.36E-4 (0.001)  0.094 (0.005)  3.39E-3 (0.001)
Occlusion 0.988 (0.001) -1.93E-3 (0.001)  0.095 (0.005)  4.57E-3 (0.001)
Aug Occlusion  0.989 (0.001)  4.59E-4 (0.001)  0.098 (0.005)  1.90E-3 (0.002)
Retain 0.989 (0.001) -3.79E-3 (0.001)  0.093 (0.005)  7.70E-3 (0.001)
Ours 0.981 (0.004) 1.53E-2(0.004) 0.118 (0.008) -1.19E-2 (0.004)

* Acc and CE : ‘Accuracy’ and ‘Cross Entropy change’ when salient feature is masked
** Comp(Comprehensiveness) and Suff(Sufficiency) : Softmax prob. changes when salient feature is

masked or only salient feature is used



- Feature-wise, Time-wise importance
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Experiment : MIMIC-III dataset (Johnson et al., 201
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