Neural Basis Models for Interpretability (NeurIPS, 2022)

SeongSik Choi

January 22, 2024

Seoul National University

Given a input $\boldsymbol{x} = (x_1, \dots, x_D) \in \mathbb{R}^D$, a label $y \in \mathbb{R}$, a link function $g : \mathbb{R}^D \to \mathbb{R}$, $g(\boldsymbol{x})$ can be expressed as

$$GAM : g(x) = f_0 + \sum_{i=1}^{D} f_i(x_i)$$
$$GA^2M : g(x) = f_0 + \sum_{i=1}^{D} f_i(x_i) + \sum_{i=1}^{D} \sum_{j>i} f_{ij}(x_i, x_j)$$

for some bias $f_0 \in \mathbb{R}$, univariate functions f_i , and bivariate functions $f_{ij} : \mathbb{R} \to \mathbb{R}$.

$$\mathsf{GAM}: g(\boldsymbol{x}) = f_0 + \sum_{i=1}^{D} f_i(x_i)$$

Neural Additive Model (NAM): each f_i is parametrized by DNN.

Neural Basis Model (NBM): each f_i is represented as $f_i(x_i) = \sum_{k=1}^{B} h_k(x_i)a_{ik}$. And basis functions $(h_1, \ldots, h_B) : \mathbb{R} \to \mathbb{R}^B$ are parametrized by DNN.

Multiclass GAM :
$$g_{l}(\boldsymbol{x}) = f_{0l} + \sum_{i=1}^{D} f_{i}(x_{i}) \boldsymbol{w}_{il}$$

Neural Basis Model (NBM): each f_i is represented as $f_i(x_i) = \sum_{k=1}^{B} h_k(x_i)a_{ik}$. And basis functions $(h_1, \ldots, h_B) : \mathbb{R} \to \mathbb{R}^B$ are parametrized by DNN.

NBM Extension(NB²M)

$$GA^{2}M: g(\boldsymbol{x}) = f_{0} + \sum_{i=1}^{D} f_{i}(x_{i}) + \sum_{i=1}^{D} \sum_{j>i} f_{ij}(x_{i}, x_{j})$$

NB²M: each f_{ij} is represented as $f_{ij}(x_i, x_j) = \sum_{k=1}^{B} u_k(x_i, x_j) b_{ijk}$. And additional basis functions $(u_1, \ldots, u_B) : \mathbb{R}^2 \to \mathbb{R}^B$ are parametrized by DNN.

Extension to multi-class setting can be done in the similar way as for NBM.

If all f_i s are in an RKHS, then risk converges to 0 as $n \rightarrow 0$. $\Rightarrow B = O(\log D)$ bases are sufficient. The proof seems a little awkward to me.

Rather than tuning this hyperparameter, they recommend setting B = 100 for NBM and B = 200 for NB²M as it performs well across a large variety of datasets they experimented with.

(1) Number of parameters : Number of weight parameters needed to learn the model. When the input dimension is large, NBM has far fewer parameters than NAM.

(2) Throughput : The number of data instances processed per second, which directly affects the training speed. NBM are much more efficient than NAM.

(3) Performance : NBM outperform NAM and NODE-GAM(state of the art) on most datasets.

(4) Stability : the functions f_i of NBM are much more stable than those of NAM.

(1) Number of parameters and (2) Throughput

Model	CA Housing		FICO		CoverType		Newsgroups		iNat. Birds	
	#par.	x/sec	#par.	x/sec	#par.	x/sec	#par.	x/sec	#par.	<i>x</i> /sec
NAM NBM	54K 65K	0.5M 3.4M×6.8	262K 68K	123K 821K×6.7	363K 70K	80K 530K×6.6	984M 18M	23 †9K×391	2.3M 0.5M	15K 74K×4.9
NA ² M NB ² M	243K 161K	119K 641K×5.4	5.3M 0.3M	6K 30K×5.0	10M 0.5M	3K 15K×5.0	_	-	320M 66M	99 374×3.8

When the input dimension is large, NBM has far fewer parameters than NAM.

NBM are much more efficient than NAM.

(3) Performance

Model	MIMIC-II	Credit	Click	Epsilon	Higgs	Microsoft	Yahoo MSE↓	Year MSE↓
	AUROC↑	AUROC↑	Error↓	Error ↓	Error↓	MSE ↓		
NAM	0.8539 ±0.0004	0.9766 ±0.0027	0.3317 ±0.0005	0.1079 ±0.0002	0.2972 ±0.0001	0.5824 ±0.0002	0.6093 ±0.0003	85.25 ±0.01
NODE GAM	$\underset{\pm 0.0110}{\textbf{0.8320}}$	$\underset{\pm 0.0110}{\textbf{0.9810}}$	$\underset{\pm 0.0001}{\textbf{0.3342}}$	$\underset{\pm 0.0003}{\textbf{0.1040}}$	$\underset{\pm 0.0001}{\textbf{0.2970}}$	$\underset{\pm 0.0004}{\textbf{0.5821}}$	$\underset{\pm 0.0006}{\textbf{0.6101}}$	85.09 ±0.01
NBM	0.8549 ±0.0004	0.9829 ±0.0014	$\underset{\pm 0.0002}{\textbf{0.3312}}$	0.1038 ±0.0002	0.2969 ±0.0001	0.5817 ±0.0001	0.6084 ±0.0001	$\underset{\pm 0.01}{\textbf{85.10}}$
NA ² M	0.8639 ±0.0011	0.9824 ±0.0032	0.3290 ±0.0005	_	0.2555 ±0.0003	0.5622 ±0.0003	_	79.80 ±0.05
NODE GA ² M	0.8460 ±0.0110	0.9860 ±0.0100	0.3307 ±0.0001	$\underset{\pm 0.0002}{\textbf{0.1050}}$	0.2566 ±0.0003	0.5618 ±0.0003	0.5807 ±0.0004	79.57 ±0.12
NB ² M	0.8690 ±0.0010	0.9856 ±0.0017	0.3286 ±0.0002	_	0.2545 ±0.0002	0.5618 ±0.0002	_	79.01 ±0.03

NBM outperform NAM and NODE-GAM(SOTA) on most datasets.

(4) Stability

The functions f_i of NBM are much more stable than those of NAM.