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Introduction

1 Challenge
▶ In a scenario where the sensitive attribute is imbalanced, the

generalization of fairness constraints (ex. EqualizedOdds) is
substantially worse than the generalization of classification error.

2 Solution
▶ FIFA: Flexible and Imbalance-Fairness-Aware approach that

takes both classification error and fairness constraints violation
into account when training the model.
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Methodology

Notations
1 Datasets: (x , y , a)

▶ x ∈ X : feature vector.
▶ y ∈ Y : the corresponding label.

▶ a ∈ A : sensitive attribute

2 Task: Supervised k-class classification problem
▶ model f : X → Rk provides k scores

h(x) = argmax
i

f (x)i

▶ h(X ) is the prediction of the label Y of input X .

3 Classification task objective function is balanced loss.

Lbal [f ] = P(X ,Y )∼Pbal

[
f (X )Y < max

l ̸=Y
f (X )l

]
▶ Pbal =

∑k
i=1 Pi/k and Pi = P(X | Y = i)
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Methodology

Notations

5 Margin for class i by γi = minj∈Si γ (xj , yj), where

γ(x , y) = f (x)y −max
l ̸=y

f (x)l

6 Margin for demographic subgroups γi ,a = γi + δi ,a and δi ,a ≥ 0

γi = min {γi ,a1 , γi ,a2}
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Methodology

Fairness Constraints

1 Violation of fairness constraints : Lfv

▶ In the case of binary classification & Equalized Odds

Lfv =
∑

i∈Y |P (h(X ) = i | Y = i ,A = a1)− P (h(X ) = i | Y = i ,A = a2)|

2 The new objective

combined error loss: M[f ] = Lbal [f ] + αLfv

▶ α > 0 is hyperparameter.
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Methodology

Upper bound for M[f ] & Optimization
Theorem
With high probability, for Y = {0, 1},A = {a1, a2}, and for some proper
complexity measure of class F , i.e. C (F), for any f ∈ F ,

M[f ] ≲
∑
i∈Y

1
γi

√
C (F)

ni
+

∑
i∈Y,a∈A

2α
γi

√
C (F)

ni,a

• Optimizing the upper bound in Theorem with respect to margins in the sense
that

g (γ0, γ1) ≤ g (γ0− δ, γ1 + δ)

for g (γ0, γ1) =
∑

i∈Y
1

γi
√
ni
+ 2α

∑
i∈Y,a∈A

1
γi

√
ni,a

and all δ ∈ [−γ1, γ0]

γ0/γ1 = ñ
1/4
1 /ñ

1/4
0
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Methodology

FIFA

• Optimization
γ0/γ1 = ñ

1/4
1 /ñ

1/4
0 ,

where the adjusted sample size ñi =
niΠa∈Ani,a

(
√

Πa∈Ani,a+2α
∑

a∈A
√
ni ni,a)

2 for

i ∈ {0, 1}.

• Since γi ,a = γi + δi ,a, our target margin is as follows.

γi ,a = C/ñ
1/4
i + δi ,a

where δi,a and C are non-negative parameters.
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Methodology

FIFA: How to choose δi ,a?

• Within each class i , we identify Si ,a with the largest subgroup |Si ,a|
▶ Set the corresponding δi ,a = 0.
▶ δi ,A\a = β , where β ≥ 0 ; hyperparameter.

• As a further illustration, without loss of generality, assume for all
i , |Si ,a1 | ≥ |Si ,a2 |. Thus selected {δi ,a}i ,a ensures the upper bound
in the Theorem is tighter in the sense that for any δ > 0,

∑
i∈Y

(
1

γi
√
ni,a1

+
1

(γi + δ)
√
ni,a2

)
≤

∑
i∈Y

(
1

(γi + δ)
√
ni,a1

+
1

γi
√
ni,a2

)
.
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Methodology

FIFA: Implementation

• Consider a logits-based loss ℓ((x , y); f ) = ℓ
(
f (x)y , {f (x)i}i∈Y\y

)
▶ Ex) 0-1 loss: 1

{
f (x)y < maxi∈Y\y f (x)i

}
▶ Ex) Softmax-cross-entropy loss: − log e f (x)y /

(
e f (x)y +

∑
i ̸=y e

f (x)i
)
.

• FIFA loss

ℓFIFA ((x , y , a); f ) = ℓ
(
f (x)y −∆y ,a, {f (x)i}i∈Y\y

)
where ∆i,a = C/ñ

1/4
i + δi,a
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Experiment

• FIFA: ResNet-18 with FIFA loss for the CelebA dataset.

• LDAM: ResNet-18 using Label Distribution-Aware Margin loss(
minimizing the upper bound of Lbal).

• Vanilla: ResNet-18 using softmax-cross-entropy loss under EO
constraints.

11



Experiment

• Results of the 20 experiment of the balanced loss (Lbal) and
fairness loss (Lfv) using ResNet-18 with FIFA and vanilla softmax
cross-entropy loss respectively.

• λ- weighted combined loss

Lλ = λLbal + (1 − λ)Lfv
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Conclusion

• FIFA approach is shown to mitigate poor fairness generalization
observed in vanilla models large or small.
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