FIFA: Making Fairness More Generalizable in Classifiers Trained on Imbalanced Data

Kyungseon Lee, Choeun Kim, Hankyo Jung January 19, 2024

Seoul National University

1 Introduction

Introduction

Challenge

► In a scenario where the sensitive attribute is imbalanced, the generalization of fairness constraints (ex. EqualizedOdds) is substantially worse than the generalization of classification error.

2 Solution

► FIFA: Flexible and Imbalance-Fairness-Aware approach that takes both classification error and fairness constraints violation into account when training the model.

Notations

- **1** Datasets: (x, y, a)
 - ▶ $x \in \mathcal{X}$: feature vector.
 - ▶ $y \in \mathcal{Y}$: the corresponding label.
 - \blacktriangleright *a* \in A : sensitive attribute

Pask: Supervised k-class classification problem
▶ model f : X → R^k provides k scores

$$h(x) = \underset{i}{\operatorname{argmax}} f(x)_i$$

▶ h(X) is the prediction of the label Y of input X.

S Classification task objective function is balanced loss.

$$\mathcal{L}_{\mathsf{bal}}\left[f\right] = \mathbb{P}_{(X,Y)\sim\mathcal{P}_{\mathsf{bal}}}\left[f(X)_{Y} < \max_{l \neq Y} f(X)_{l}\right]$$

• $\mathcal{P}_{bal} = \sum_{i=1}^{k} \mathcal{P}_i / k \text{ and } \mathcal{P}_i = \mathcal{P}(X \mid Y = i)$

Notations

6 Margin for class *i* by $\gamma_i = \min_{j \in S_i} \gamma(x_j, y_j)$, where

$$\gamma(x,y) = f(x)_y - \max_{l \neq y} f(x)_l$$

6 Margin for demographic subgroups $\gamma_{i,a} = \gamma_i + \delta_{i,a}$ and $\delta_{i,a} \ge 0$

$$\gamma_i = \min\left\{\gamma_{i,a_1}, \gamma_{i,a_2}\right\}$$

Fairness Constraints

- 1 Violation of fairness constraints : \mathcal{L}_{fv}
 - ▶ In the case of binary classification & Equalized Odds

$$\mathcal{L}_{\text{fv}} = \sum_{i \in \mathcal{Y}} \left| \mathbb{P}\left(h(X) = i \mid Y = i, A = a_1 \right) - \mathbb{P}\left(h(X) = i \mid Y = i, A = a_2 \right) \right|$$

2 The new objective

combined error loss: $\mathcal{M}[f] = \mathcal{L}_{\mathsf{bal}}[f] + \alpha \mathcal{L}_{\mathsf{fv}}$

▶
$$\alpha > 0$$
 is hyperparameter.

Upper bound for $\mathcal{M}[f]$ & Optimization

Theorem

With high probability, for $\mathcal{Y} = \{0, 1\}, \mathcal{A} = \{a_1, a_2\}$, and for some proper complexity measure of class \mathcal{F} , i.e. $C(\mathcal{F})$, for any $f \in \mathcal{F}$,

$$\mathcal{M}[f] \lesssim \sum_{i \in \mathcal{Y}} \frac{1}{\gamma_i} \sqrt{\frac{\mathcal{C}(\mathcal{F})}{n_i}} + \sum_{i \in \mathcal{Y}, a \in \mathcal{A}} \frac{2\alpha}{\gamma_i} \sqrt{\frac{\mathcal{C}(\mathcal{F})}{n_{i,a}}}$$

• Optimizing the upper bound in Theorem with respect to margins in the sense that

$$g(\gamma_0,\gamma_1) \leq g(\gamma_0 - \delta,\gamma_1 + \delta)$$

for $g(\gamma_0, \gamma_1) = \sum_{i \in \mathcal{Y}} \frac{1}{\gamma_i \sqrt{n_i}} + 2\alpha \sum_{i \in \mathcal{Y}, a \in \mathcal{A}} \frac{1}{\gamma_i \sqrt{n_{i,a}}}$ and all $\delta \in [-\gamma_1, \gamma_0]$

$$\gamma_0/\gamma_1 = {\widetilde{n}_1^{1/4}}/{\widetilde{n}_0^{1/4}}$$

FIFA

• Optimization

$$\gamma_0/\gamma_1 = \tilde{n}_1^{1/4}/\tilde{n}_0^{1/4},$$

where the adjusted sample size $\tilde{n}_i = \frac{n_i \prod_{a \in \mathcal{A}} n_{i,a}}{\left(\sqrt{\prod_{a \in \mathcal{A}} n_{i,a}} + 2\alpha \sum_{a \in \mathcal{A}} \sqrt{n_i n_{i,a}}\right)^2}$ for $i \in \{0, 1\}$.

• Since $\gamma_{i,a} = \gamma_i + \delta_{i,a}$, our target margin is as follows.

$$\gamma_{i,a} = C/\tilde{n}_i^{1/4} + \delta_{i,a}$$

where $\delta_{i,a}$ and *C* are non-negative parameters.

FIFA: How to choose $\delta_{i,a}$?

- Within each class *i*, we identify $S_{i,a}$ with the largest subgroup $|S_{i,a}|$
 - ▶ Set the corresponding $\delta_{i,a} = 0$.

 $\blacktriangleright~\delta_{i,\mathcal{A}\backslash \mathbf{a}}=\beta$, where $\beta\geq\mathbf{0}$; hyperparameter.

• As a further illustration, without loss of generality, assume for all $i, |S_{i,a_1}| \ge |S_{i,a_2}|$. Thus selected $\{\delta_{i,a}\}_{i,a}$ ensures the upper bound in the Theorem is tighter in the sense that for any $\delta > 0$,

$$\sum_{i\in\mathcal{Y}}\left(\frac{1}{\gamma_i\sqrt{n_{i,a_1}}}+\frac{1}{\left(\gamma_i+\delta\right)\sqrt{n_{i,a_2}}}\right)\leq\sum_{i\in\mathcal{Y}}\left(\frac{1}{\left(\gamma_i+\delta\right)\sqrt{n_{i,a_1}}}+\frac{1}{\gamma_i\sqrt{n_{i,a_2}}}\right).$$

FIFA: Implementation

- Consider a logits-based loss $\ell((x, y); f) = \ell(f(x)_y, \{f(x)_i\}_{i \in \mathcal{Y} \setminus Y})$
 - $\blacktriangleright \text{ Ex) 0-1 loss: } 1\left\{f(x)_y < \max_{i \in \mathcal{Y} \setminus \mathcal{Y}} f(x)_i\right\}$
 - ► Ex) Softmax-cross-entropy loss: $-\log e^{f(x)_y} / \left(e^{f(x)_y} + \sum_{i \neq y} e^{f(x)_i} \right)$.

• FIFA loss

$$\ell_{\mathsf{FIFA}}\left((x, y, a); f\right) = \ell\left(f(x)_y - \Delta_{y,a}, \{f(x)_i\}_{i \in \mathcal{Y} \setminus y}\right)$$

where $\Delta_{i,a} = C/\tilde{n}_i^{1/4} + \delta_{i,a}$

Experiment

Experiment

Method		FIFA	LDAM	Vanilla
Combined Loss	Test	6.71%	7.29%	14.01%
	Gen Error	0.66%	2.07%	6.87%
Fairness Violation	Test	2.75%	5.39%	20.29%
	Gen Error	2.57%	3.07%	13.59%
Balanced Error	Test	10.67%	9.20%	7.74%
	Gen Error	1.25%	1.07%	0.15%

- FIFA: ResNet-18 with FIFA loss for the CelebA dataset.
- LDAM: ResNet-18 using Label Distribution-Aware Margin loss(minimizing the upper bound of L_{bal}).
- Vanilla: ResNet-18 using softmax-cross-entropy loss under EO constraints.

Experiment

- Results of the 20 experiment of the balanced loss ($\mathcal{L}_{\rm bal}$) and fairness loss ($\mathcal{L}_{\rm fv}$) using ResNet-18 with FIFA and vanilla softmax cross-entropy loss respectively.
- λ weighted combined loss

$$\mathcal{L}_{\lambda} = \lambda \mathcal{L}_{\mathrm{bal}} + (1 - \lambda) \mathcal{L}_{\mathrm{fv}}$$

Conclusion

• FIFA approach is shown to mitigate poor fairness generalization observed in vanilla models large or small.