Last-Layer Fairness Fine-tuning is Simple and Effective for Neural Networks (ICML 2023)

SeHyun Park February 22, 2024

Seoul National University

Outline

1 Preliminaries

- 2 Problem Background
- Fair Deep Feature Reweighting(FDR)
- 4 Experiments

Preliminaries

Introduction

- ► Recent research has shown that adding fairness constraints to the objective function leads to severe over-fitting to fairness criteria in large models, especially when the training data is imbalanced.
- ► To handle this, in this paper, the authors propose a simple and effective framework by fine-tuning only the last layer of a pre-trained model.

Notation

- $ightharpoonup D = \{(x_i, a_i, y_i)\}_{i=1}^N$: Dataset
 - $x_i \in \mathcal{X}$: Feature vector
 - $a_i \in \mathcal{A}$: Sensitive attribute (such as race or gender)
 - $y_i \in \mathcal{Y}$: Label
 - st For simplicity, in this paper, it is assumed that a and y are binary variables.

► Cross entropy loss

- $\hat{L}(h) = -\frac{1}{N} \sum_{i=1}^{N} y_i \cdot log(h(x_i))$
- ullet where $h \in \mathcal{H}: \mathcal{X} \mapsto [0,1]$

Fairness

1 Equalized odds (EO)

- $\bullet \ \ \text{Definition}: \mathbb{P}(\hat{y}=1|a=0,y=y) = \mathbb{P}(\hat{y}=1|a=1,y=y) \ \ \forall y \in \{0,1\}$
- Objective : $\min_h \left[\hat{L}(h) + \alpha (f_{pr} + f_{nr}) \right]$

where
$$f_{pr} = \left| \frac{\sum_{i} h(x_{i})(1-y_{i})a_{i}}{\sum_{i} a_{i}} - \frac{\sum_{i} h(x_{i})(1-y_{i})(1-a_{i})}{\sum_{i} (1-a_{i})} \right| \& f_{nr} = \left| \frac{\sum_{i} (1-h(x_{i}))(1-y_{i})a_{i}}{\sum_{i} a_{i}} - \frac{\sum_{i} (1-h(x_{i}))(1-y_{i})(1-a_{i})}{\sum_{i} (1-a_{i})} \right|$$

2 Accuracy equality (AE)

- Definition : $\mathbb{P}(\hat{y} \neq y | a = 0) = \mathbb{P}(\hat{y} \neq y | a = 1)$
- Objective : $\min_h \left[\hat{L}(h) + \alpha \left| \hat{L}^{a+}(h) \hat{L}^{a-}(h) \right| \right]$ where $\hat{L}^{a+}(h)$ and $\hat{L}^{a-}(h)$ are the cross entropy loss of samples with respectively a=1 and a=0

3 Max-Min fairness (MMF)

- Definition : $\max \min_{y \in \mathcal{Y}, a \in \mathcal{A}} \mathbb{P}(\hat{y} = y|y, a)$
- Objective : $\min_h \max\{\hat{L}^{(y+,a+)}(h),\hat{L}^{(y-,a+)}(h),\hat{L}^{(y+,a-)}(h),\hat{L}^{(y-,a-)}(h)\}$ where $\hat{L}^{(y',a')}(h)$ denotes the cross-entropy loss on the training samples where y=y' and a=a'

Problem Background

Problem Background

- ► Challenges in training fair neural networks with in-processing techniques
 - Cherepanova et al. (2021)[1] finds that large models tend to overfit fairness objectives, leading to poor performance on unseen data in terms of fairness, especially when the training data is imbalanced.
 - Two main approaches
 - 1) train the full neural network with fairness constraints
 - 2) train a model without fairness constraints and fine-tune the full neural network

Inspiration

- ▶ Standard training can still learn core features on imbalanced datasets
 - Kirichenko et al. (2022)[2] found that when fixing the representation in a
 pre-trained model and only fine-tuning the last linear layer, the performance
 was similar or even better compared to the conventional approach, even
 when dealing with imbalanced datasets.

Inspiration

► Access to the preceding property

- Model: pre-trained ResNet-18 on the original CelebA dataset using ERM
- Data : customized hair-only CelebA(= D_H)
- experiment:
 - 1) Divide the D_H into two sets: D_H^{Tr} and D_H^{Te} . where D_H^{Tr} is evenly balanced comprise 107 images from each (a,y).
 - 2) fine-tune the last layer of the model on ${\cal D}_{\cal H}^{Tr}$ and evaluate it on ${\cal D}_{\cal H}^{Te}$
- Result.

Train	Test (Worst/Mean)				
	Original	Hair-only			
Original	0.268/0.946	0.863/0.878			
Balanced	0.789/0.835	0.827/0.843			

Fair Deep Feature Reweighting(FDR)

Fair Deep Feature Reweighting(FDR)

- ► Fair Deep Feature Reweighting(FDR)
 - Step 1: pre-train a representation
 - 1) train a neural network ${\cal N}$ with ERM
 - 2) Let $\mathcal{N} = w \circ \Phi$, where w is the last layer.
 - Step 2: fine-tune the last layer with reweighting and fairness constraints.
 - fix Φ
 - 2) sample a small dataset D_r from the training dataset D such that each (a, y) group in D_r has the same number of samples.
 - 3) fine-tune w^{new} on D_r with standard ERM and fairness constraints.
 - 4) final model is $\mathcal{N}^{new} = w^{new} \circ \Phi$

Experiments

▶ Setup

- Dataset : CelebA
- Compared methods
 - FullFT-Reg: Impose the fairness constraints on the training objective and train the full neural network.
 - LastFT: Fine-tune the last layer of a pre-trained model on the imbalanced validation dataset
 - o LastFT-RW: Fine-tune the last layer of a pre-trained model on the balanced dataset.
 - LastFT-Reg: Fine-tune the last layer of a pre-trained model on the imbalanced validation dataset with fairness constraints.

Experiments

► Setup

- Metrics
 - o WACC: weighted accuracy
 - o AUC: area under the ROC Curve
 - $\circ \ \operatorname{EO}_{\operatorname{Diff}} : \max_{y \in \mathcal{Y}} \{ |\mathbb{P}(\hat{y} = 1 \mid a = 0, y) \mathbb{P}(\hat{y} = 1 \mid a = 1, y) | \}$
 - $\circ \ \operatorname{AE_{Diff}}: |\mathbb{P}(\hat{y} \neq y \mid a = 0) \mathbb{P}(\hat{y} \neq y \mid a = 1)|$
 - $\circ WA: \min_{a \in \mathcal{A}, y \in \mathcal{Y}} \{ \mathbb{P}(\hat{y} = y \mid a, y) \}$
 - \circ AF = (WACC EO_{Diff} or WACC AE_{Diff} or WACC + WA)

Experiments

► Result

Fairness Notion 1: EO	WACC		AUC		EO_Diff		AF
	Train	Test	Train	Test	Train	Test	Test
FullFT-Reg	1.000	0.914	1.000	0.969	0.000	0.499	0.415
LastFT	0.918	0.913	0.974	0.971	0.308	0.327	0.586
LastFT-RW	0.913	0.908	0.970	0.968	0.100	0.207	0.701
LastFT-Reg	0.898	0.901	0.971	0.969	0.177	0.153	0.748
FDR	0.898	0.892	0.962	0.958	0.031	0.107	0.785
Fairness Notion 2: AE	WA	CC	Al	JC	AE.	Diff	AF
	Train	Test	Train	Test	Train	Test	Test
FullFT-Reg	1.000	0.914	1.000	0.968	0.000	0.049	0.865
LastFT	0.918	0.913	0.974	0.971	0.066	0.043	0.869
LastFT-RW	0.913	0.908	0.970	0.968	0.026	0.020	0.888
LastFT-Reg	0.907	0.904	0.969	0.964	0.016	0.009	0.895
FDR	0.898	0.900	0.963	0.967	0.009	0.003	0.897
Fairness Notion 3: MMF	WA	CC	Al	JC	W	/A	AF
	Train	Test	Train	Test	Train	Test	Test
FullFT-Reg	1.000	0.910	1.000	0.969	1.000	0.393	1.303
LastFT	0.918	0.913	0.974	0.971	0.633	0.598	1.511
LastFT-RW	0.913	0.908	0.970	0.968	0.872	0.732	1.640
LastFT-Reg	0.896	0.888	0.960	0.955	0.879	0.717	1.605
FDR	0.902	0.898	0.964	0.962	0.868	0.803	1.701

Figure 1: Overall performance on CelebA dataset with different fairness constraints

References

- [1] V. Cherepanova, V. Nanda, M. Goldblum, J. P. Dickerson, and T. Goldstein, "Technical challenges for training fair neural networks," arXiv preprint arXiv:2102.06764, 2021.
- [2] P. Kirichenko, P. Izmailov, and A. G. Wilson, "Last layer re-training is sufficient for robustness to spurious correlations," arXiv preprint arXiv:2204.02937, 2022.

