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Introduction

• Focused on EL (Equalized Loss)

• Problem : Imposing EL on the learning process leads to a

non-convex optimization problem even if the loss function is convex

• Developed an algorithm with a theoretical performance guarantee for

EL fairness.

• also develop a simple algorithm for finding a sub-optimal predictor

satisfying EL fairness
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Problem Formulation

• Notation

(X ,A,Y ) : training dataset from two social groups

X ∈ X : feature vectore, A ∈ {0, 1} : sensitive attribute

Y ∈ Y ⊆ R : label or output

F : set of predictors fw : X → R

l : Y × R → R loss function

• Expected loss

L(w) := E{l(Y , fw (X))} w .r .t (X ,Y )

La(w) := E{l(Y , fw (X))|A = a}
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Problem Formulation

• Assume that l(y , fw (x)) is differentiable and strictly convex in w

Definition

We say fw satisfies the equalized loss(EL) fairness notion if

L0(w) = L1(w). Moreover, we say fw satisfies γ-EL for some γ > 0 if

−γ ≤ L0(w)− L1(w) ≤ γ.

• If l(Y , fw (X )) is convex in w , then both L0(w) and L1(w) are also

convex in w . However, L0(w)− L1(w) is not necessary convex.

• Therefore, the following optimization problem for finding a fair

predictor under γ-EL is not a convex programming,

minwL(w) s.t. − γ ≤ L0(w)− L1(w) ≤ γ (1)
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Optimal Model under γ-EL

• Assumption 1. Expected losses L0(w), L1(w) and L(w) are strictly

convex and differentiable in w . Moreover, each of them has a unique

minimizer.

wGa = arg min
w

La(w)

Since it is unconstrained, wGa can be found efficiently by common

convex solvers.

• Assumption 2. We assume the following holds,

L0(wG0) ≤ L1(wG0) and L1(wG1) ≤ L0(wG1)
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Optimal Model under γ-EL

• Under assumptions, the optimal 0-EL fair predictor can be easily

found using ELminimizer(wG0 ,wG1 , ϵ, γ) with γ = 0.

Parameter ϵ > 0 specifies the stopping criterion.
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Optimal Model under γ-EL

Theorem

Let {λ(i)
mid |i = 0, 1, 2, . . . } and {w∗

i |i = 0, 1, 2, . . . } be two sequences

generated by ELminimizer when γ = ϵ = 0, i.e.,

ELminimizer(wG0 ,wG1 , 0, 0). Under Assumptions, we have,

lim
i→∞

w∗
i = w∗ and lim

i→∞
λ
(i)
mid = E{l(Y , fw∗(X ))}

where w∗ is the global optimal solution to (1).

The theorem implies that when γ = ϵ = 0 and i goes to infinity, the

solution to convex problem (4) is the same as the global optimal solution

under EL constraint.
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Optimal Model under γ-EL

Theorem

Assume that L0(wG0)− L1(wG0) < −γ and L0(wG1)− L1(wG1) > γ. If

wO does not satisfy the γ-EL constraint, then, as ϵ → 0, the output of

Algorithm 2 goes to the optimal γ-EL fair solution (i.e., solution to (1)).
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Optimal Model under γ-EL

• Complexity Analysis

If the time complexity of solving (4) is O(p(dw )), then the overall

time complexity of Algorithm 1 is O(p(dw )log(1/ϵ)).

• Regularization

Consider a supervised learning model with regularization.

min
w

Pr(A = 0)L0(w) + Pr(A = 1)L1(w) + R(w)

s.t., |L0(w)− L1(w)| < γ
(2)

We can re-write (2) as follows,

min
w

Pr(A = 0)(L0(w) + R(w)) + Pr(A = 1)(L1(w) + R(w)),

s.t., |(L0(w) + R(w))− (L1(w) + R(w))| < γ
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Sub-optimal Model under γ-EL

• ELminimizer still requires solving a convex constrained

optimization in each iteration.

• In this section, we propose another algorithm that finds a

sub-optimal solution to optimization (1) without solving

constrained optimization in each iteration.

• The algorithm consists of two phases.

Phase 1. Find two weight vectors by solving two unconstrained

convex optimization problems

Phase 2. Generate a new weight vector satisfying γ-EL using the

two weight vectors found in the first phase.
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Sub-optimal Model under γ-EL

• Phase 1. Unconstrained optimization

wO = arg min
w

L(w)

â = arg max
a∈{0,1}

La(wO)

wGâ
= arg min

w
Lâ(w)

• Since L(w) is strictly convex in w , the above can be solved efficiently.

• â is a disadvantaged under predictor fwO .
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Sub-optimal Model under γ-EL

• Phase 2. Binary search to find the fair predictor

g(β) := Lâ((1− β)wO + βwGâ
)− L1−â((1− β)wO + βwGâ

)

h(β) := L((1− β)wO + βwGâ
)

Theorem

Under Assumption 1 and 2,

1. There exists β0 ∈ [0, 1] such that g(β0) = 0

2. h(β) is strictly increasing in β ∈ [0, 1]

3. g(β) is strictly decreasing in β ∈ [0, 1]

• If we start from wO and move toward wGâ along a straight line, the overall

loss increases and the disparity between two groups decreases until we

reach (1− β0)wO + β0wGâ

• Since g(β) is strictly decreasing function, β0 can be found using binary

search.
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Sub-optimal Model under γ-EL

Theorem

Assume that Assumption 1 and 2 hold, and let gγ(β) = g(β)− γ. If

gγ(0) ≤ 0, then wO satisfies the γ-EL fairness; if gγ(0) > 0, then

limi→∞ β
(i)
mid = β

(∞)
mid exits, and (1− β

(∞)
mid )wO + β

(∞)
mid wGâ

satisfies the

γ-EL fairness constraint.
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Sub-optimal Model under γ-EL

• Upper bound of the expected loss of fw

Theorem

Under Assumption 1 and 2, we have the following :

L(w) ≤ maxa∈{0,1} La(wO). That is, the expected loss of fw is not worse than

the loss of the disadvantaged group under predictor fwO .

• Learning with Finite Samples

L̂(w) =
1

n

n∑
i=1

l(Yi , fw (Xi )),

L̂a(w) =
1

na

∑
i :Ai=a

l(Yi , fw (Xi ))

ŵ = arg min
w

L̂(w), s.t. |L̂0(w)− L̂1(w)| ≤ γ̂ (3)

Solving (3) using γ and empirical loss is equivalent to solving (1) if the

number of data points from each group is sufficiently large. 13



Beyond Linear Models

• To train a deep model under the equalized loss fairness notion, we

can take advantage of Algorithm 2 for fine-tuning under EL as

long as the the objective function is convex with respect to the

parameters of the output layer.
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Experiments

• Baselines : PM, LinRe, FairBatch

• Overall loss and loss difference between two demographic groups
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