Loss Balancing for Fair Supervised Learning

Choeun Kim

February 21, 2024

Seoul National University



Introduction

e Focused on EL (Equalized Loss)

e Problem : Imposing EL on the learning process leads to a
non-convex optimization problem even if the loss function is convex

e Developed an algorithm with a theoretical performance guarantee for
EL fairness.

e also develop a simple algorithm for finding a sub-optimal predictor
satisfying EL fairness



Problem Formulation

e Notation
(X,A,Y) : training dataset from two social groups

X € X : feature vectore, A € {0, 1} : sensitive attribute
Y € Y CR: label or output
F : set of predictors f, : X — R
/|:Y xR — R loss function

e Expected loss

L(w) :=E{I(Y, fW(X)} w.r.t (X,Y)
La(W) = ]E{/(Y, fw(X))|A - a}



Problem Formulation

e Assume that /(y, f,(x)) is differentiable and strictly convex in w

Definition

We say f,, satisfies the equalized loss(EL) fairness notion if
Lo(w) = Li(w). Moreover, we say f,, satisfies y-EL for some v > 0 if
=y < Lo(w) — Li(w) <.

o If I(Y,f,(X)) is convex in w, then both Lo(w) and L;(w) are also
convex in w. However, Lo(w) — Li(w) is not necessary convex.

e Therefore, the following optimization problem for finding a fair
predictor under v-EL is not a convex programming,

~—

miny, L(w) s.t. —~ < Lo(w) — L1(w) <~ (1



Optimal Model under 7-EL

e Assumption 1. Expected losses Lo(w), L1(w) and L(w) are strictly
convex and differentiable in w. Moreover, each of them has a unique
minimizer.

wg, = arg mvin Lo(w)

Since it is unconstrained, wg, can be found efficiently by common
convex solvers.

e Assumption 2. We assume the following holds,

LO(WGO) < Ll(WGo) and Ll(Wcl) < LO(WG1)



Optimal Model under 7-EL

e Under assumptions, the optimal 0-EL fair predictor can be easily
found using ELminimizer(wg,, wg,, €,7y) with v = 0.

Algorithm 1 Function ELminimizer

Input: we,, we,, €,
0) 0 .

Parameters: )\Sn'm = Ly(we, ). )\f‘,,)l, = Ly(wg,),1=0
Define Ly (w) = Ly (w) + v

1: while A, = A, > e do

2 A =0 A2

: mid = Newa + Astare)/

3: Solve the following convex optimization problem,

w) = urgminf‘\(w) s.t. Lo(w) < Aq(yll)ul 4)
w

4 ND = L (w?)
s itAO >\ then

. (i41) _ (D) .\ (+1) () |
6 Astart = Mmid> Aend = Aends
7 else ) ;

. (i41) _ () . G+ _ ()
8: )\l nd T )\mui‘ )\sturt - )\stm‘t'
9: i=i+1;

10:  endif
11: end while

Output: w;

Parameter € > 0 specifies the stopping criterion.



Optimal Model under y-EL

Theorem

Let {/\E,';)id|i =0,1,2,...} and {w|i =0,1,2,...} be two sequences
generated by ELminimizer when v =€ =0, i.e,
Elminimizer(wg,, wg,,0,0). Under Assumptions, we have,
lim w' =w* and lim A B{I(Y, £ (X))}
where w* s the global optimal solution to (1).
The theorem implies that when v = € = 0 and / goes to infinity, the

solution to convex problem (4) is the same as the global optimal solution
under EL constraint.



Optimal Model under y-EL

Algorithm 2 Solving Optimization (1)
Input: wg,, we, .67

I: wy =ELminimizer(wg,,Wq,, € 7)

2 w_, =ELminimizer(wg,, Wa,, €, —7)
3 if L(w,) < L(w_,) then
4 w'=w,
5: else

6 wr=w_,
7. end if
Output: w*

Theorem

Assume that Lo(weg,) — L1(wg,) < —v and Lo(wg,) — Li(wg,) > . If
wo does not satisfy the y-EL constraint, then, as e — 0, the output of
Algorithm 2 goes to the optimal v-EL fair solution (i.e., solution to (1)).



Optimal Model under 7-EL

e Complexity Analysis

If the time complexity of solving (4) is O(p(dy)), then the overall
time complexity of Algorithm 1 is O(p(dy )log(1/¢)).

e Regularization

Consider a supervised learning model with regularization.
min Pr(A = 0)Lo(w) + Pr(A=1)Li(w) + R(w)
sit, |Lo(w) — Lu(w)] < 5
We can re-write (2) as follows,
min Pr(A = 0)(Lo(w) + R(w)) + Pr(A = 1)(Ly(w) + R(w)),

s.t., [(Lo(w) + R(w)) — (Li(w) + R(w))| < v



Sub-optimal Model under y-EL

e ELminimizer still requires solving a convex constrained
optimization in each iteration.

e In this section, we propose another algorithm that finds a
sub-optimal solution to optimization (1) without solving
constrained optimization in each iteration.

e The algorithm consists of two phases.

Phase 1. Find two weight vectors by solving two unconstrained
convex optimization problems

Phase 2. Generate a new weight vector satisfying v-EL using the
two weight vectors found in the first phase.



Sub-optimal Model under y-EL

e Phase 1. Unconstrained optimization

wo = arg min L(w)

9=ay mex, Ls(wo)

we,

El

arg min Ls(w)

e Since L(w) is strictly convex in w, the above can be solved efficiently.
e 3 is a disadvantaged under predictor fi,.

10



Sub-optimal Model under ~-EL

e Phase 2. Binary search to find the fair predictor

g(B) == Ls((L — B)wo + Bwg,) — Li-s((1 — B)wo + Bwe,)
h(B) := L((1 — B)wo + Bwe,)

Under Assumption 1 and 2,

1
2.
3

There exists By € [0, 1] such that g(fo) = 0
h(3) is strictly increasing in 3 € [0, 1]
g(B) is strictly decreasing in 3 € [0, 1]

If we start from wo and move toward wg, along a straight line, the overall
loss increases and the disparity between two groups decreases until we

reach (1 — ﬂo)Wo + [3()WGé
Since g(3) is strictly decreasing function, By can be found using binary

search.



Sub-optimal Model under ~-EL

Algorithm 3 Sub-optimal solution to optimization (1)
Input: wg,, wo. €, 7
Initialization: ¢.(3) = g(3) —~. i = 0. 8%, = o,

start —

590 =1

end —

1: if g, (0) < 0 then

2 w = wo, and go to line 13;
3: end if )
4 while 5, — 3%~ cdo

5 By = (3= 8500 /2
6 ifgy(5),) >0 then
;

mid

(i+1) (i) (i+1) (i) .
: t;nm = ‘17711“1‘ ‘7s;d = t:ld«
8 else
X (i+1) (i) +1 (@) .
9: Bstart = Bstarts ’i;d )= Bpid’
10:  endif
11: end while

12: w = (1 - 89 wo + 89 wa,:
13: Output: w

Theorem

Assume that Assumption 1 and 2 hold, and let g, (B8) = g(B) — . If
8+(0) <0, then wo satisfies the y-EL fairness; if g,(0) > 0, then
lim; o0 B = B9 exits, and (1 — B ) wo + B we, satisfies the
~v-EL fairness constraint.
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Sub-optimal Model under ~-EL

e Upper bound of the expected loss of f,,

Theorem

Under Assumption 1 and 2, we have the following :
L(w) < max.ego,1} La(wo). That is, the expected loss of f, is not worse than
the loss of the disadvantaged group under predictor f,,, .

e Learning with Finite Samples

iw) =1 > (Y, £(X),
i) ni (Y, £ (X))
w=argminl(w), s.t. |Lo(w)—Li(w) <% (3)

Solving (3) using ~ and empirical loss is equivalent to solving (1) if the

number of data points from each group is sufficiently large. 13



Beyond Linear Models

e To train a deep model under the equalized loss fairness notion, we
can take advantage of Algorithm 2 for fine-tuning under EL as
long as the the objective function is convex with respect to the
parameters of the output layer.
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Experiments

e Baselines

PM, LinRe, FairBatch

e Overall loss and loss difference between two demographic groups

Table |

egresion ol unde EL i
squared error loss.

iess. The loss

le 2: Logistic Regression model under EL

mess. The loss Table 3: Neural Network
function inthis example i

trsining under EL imess. The o
loss.

function in this example s 4 function in this exampl is binary cross entropy loss
5 S=01 =0 S =01 =0 B

= testloss 09216400085 0933200101 = tlos 0504200101 0540400046 S tellos 00190 £00551 0.9048% 0035
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test|Lo — Ly]  0.2687 £0.0585 0.2587 = 0.0704 test Lo — Ly|  0.0815£0.0098 01080 = 0.0098 S test|ho— 0.6543 4 0.0322  0.5595 £ 0.0482

stlos 0SII9Z0.0316 056102 00581 Gl L5TI6L0S07I 121102 2T ew  0WDRZ0WE D006

test|Lg — Ly|  0.2862+0.1933 02708 £0.1520 test|Lo — Li| 06191205459 03815 S8 test |l — L] 02771201252 0.1491 00928

lestloss 0918600179 0.8556 £ 0.0217 stloss 03516 £0.0015 03135 testloss 0011700172 0.8510%0.0195

test|Lo — Ly|  0.0699+0.0460  0.1346 = 0.0749 test|Lo — Ly|  0.0336 £0.0075 01110 test Lo~ Li|  0.0761£0.0408 01454 +0.0749

testloss 0052200200 0.8077 = 0.0223 testloss 0.3521 £ 00015 testloss 0.0127 £0.0190  0.5908 £ 0.0200

test [Fo — £1] 0.0930 % 0.0475  0.1437 % 0.0907 test | Lo = L] 0.0278 £0.0075 test |Lo — Ly| 0086200555 0.1423 2 0.0867
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