# Loss Balancing for Fair Supervised Learning

Choeun Kim February 21, 2024

Seoul National University

- Focused on EL (Equalized Loss)
- Problem : Imposing EL on the learning process leads to a non-convex optimization problem even if the loss function is convex
- Developed an algorithm with a theoretical performance guarantee for EL fairness.
- also develop a simple algorithm for finding a sub-optimal predictor satisfying EL fairness

Notation

(X, A, Y): training dataset from two social groups  $X \in \mathcal{X}$ : feature vectore,  $A \in \{0, 1\}$ : sensitive attribute  $Y \in \mathcal{Y} \subseteq \mathbb{R}$ : label or output  $\mathcal{F}$ : set of predictors  $f_w : \mathcal{X} \to \mathbb{R}$  $I : \mathcal{Y} \times \mathbb{R} \to \mathbb{R}$  loss function

Expected loss

$$L(w) := \mathbb{E}\{I(Y, f_w(\mathbb{X}))\} w.r.t (\boldsymbol{X}, Y)$$
$$L_a(w) := \mathbb{E}\{I(Y, f_w(\mathbb{X}))|A = a\}$$

## **Problem Formulation**

• Assume that  $I(y, f_w(x))$  is differentiable and strictly convex in w

### Definition

We say  $f_w$  satisfies the equalized loss(EL) fairness notion if  $L_0(w) = L_1(w)$ . Moreover, we say  $f_w$  satisfies  $\gamma$ -EL for some  $\gamma > 0$  if  $-\gamma \leq L_0(w) - L_1(w) \leq \gamma$ .

- If *I*(*Y*, *f<sub>w</sub>*(*X*)) is convex in *w*, then both *L*<sub>0</sub>(*w*) and *L*<sub>1</sub>(*w*) are also convex in *w*. However, *L*<sub>0</sub>(*w*) − *L*<sub>1</sub>(*w*) is not necessary convex.
- Therefore, the following optimization problem for finding a fair predictor under γ-EL is *not a convex* programming,

$$\min_{w} L(w) \ s.t. \ -\gamma \leq L_0(w) - L_1(w) \leq \gamma$$
 (1)

• Assumption 1. Expected losses  $L_0(w)$ ,  $L_1(w)$  and L(w) are strictly convex and differentiable in w. Moreover, each of them has a unique minimizer.

$$\boldsymbol{w}_{G_a} = \arg\min_{w} L_a(w)$$

Since it is unconstrained,  $w_{G_a}$  can be found efficiently by common convex solvers.

• Assumption 2. We assume the following holds,

$$L_0(w_{G_0}) \leq L_1(w_{G_0})$$
 and  $L_1(w_{G_1}) \leq L_0(w_{G_1})$ 

## Optimal Model under $\gamma$ -EL

 Under assumptions, the optimal 0-EL fair predictor can be easily found using ELminimizer(w<sub>G0</sub>, w<sub>G1</sub>, ε, γ) with γ = 0.



Parameter  $\epsilon > 0$  specifies the stopping criterion.

### Theorem

Let  $\{\lambda_{mid}^{(i)} | i = 0, 1, 2, ...\}$  and  $\{w_i^* | i = 0, 1, 2, ...\}$  be two sequences generated by ELminimizer when  $\gamma = \epsilon = 0$ , i.e., ELminimizer $(w_{G_0}, w_{G_1}, 0, 0)$ . Under Assumptions, we have,  $\lim_{i \to \infty} w_i^* = w^*$  and  $\lim_{i \to \infty} \lambda_{mid}^{(i)} = \mathbb{E}\{I(Y, f_{w^*}(X))\}$ where  $w^*$  is the global optimal solution to (1).

The theorem implies that when  $\gamma = \epsilon = 0$  and *i* goes to infinity, the solution to convex problem (4) is the same as the global optimal solution under EL constraint.

## Optimal Model under $\gamma$ -EL

#### Algorithm 2 Solving Optimization (1)

Input:  $w_{G_0}, w_{G_1}, \epsilon, \gamma$ 1:  $w_{\gamma} = \text{ELminimizer}(w_{G_0}, w_{G_1}, \epsilon, \gamma)$ 2:  $w_{-\gamma} = \text{ELminimizer}(w_{G_0}, w_{G_1}, \epsilon, -\gamma)$ 3: if  $L(w_{\gamma}) \leq L(w_{-\gamma})$  then 4:  $w^* = w_{\gamma}$ 5: else 6:  $w^* = w_{-\gamma}$ 7: end if Output:  $w^*$ 

### Theorem

Assume that  $L_0(w_{G_0}) - L_1(w_{G_0}) < -\gamma$  and  $L_0(w_{G_1}) - L_1(w_{G_1}) > \gamma$ . If  $w_O$  does not satisfy the  $\gamma$ -EL constraint, then, as  $\epsilon \to 0$ , the output of Algorithm 2 goes to the optimal  $\gamma$ -EL fair solution (i.e., solution to (1)).

## • Complexity Analysis

If the time complexity of solving (4) is  $\mathcal{O}(p(d_w))$ , then the overall time complexity of Algorithm 1 is  $\mathcal{O}(p(d_w)log(1/\epsilon))$ .

• Regularization

Consider a supervised learning model with regularization.

$$\min_{w} Pr(A = 0)L_0(w) + Pr(A = 1)L_1(w) + R(w)$$
  
s.t.,  $|L_0(w) - L_1(w)| < \gamma$  (2)

We can re-write (2) as follows,

$$egin{aligned} &\min_w Pr(A=0)(L_0(w)+R(w))+Pr(A=1)(L_1(w)+R(w)), \ &s.t., \ |(L_0(w)+R(w))-(L_1(w)+R(w))| < \gamma \end{aligned}$$

- ELminimizer still requires solving a convex constrained optimization in each iteration.
- In this section, we propose another algorithm that finds a sub-optimal solution to optimization (1) without solving constrained optimization in each iteration.
- The algorithm consists of two phases.

**Phase 1.** Find two weight vectors by solving two unconstrained convex optimization problems

**Phase 2.** Generate a new weight vector satisfying  $\gamma$ -EL using the two weight vectors found in the first phase.

## • Phase 1. Unconstrained optimization

$$w_{O} = \arg \min_{w} L(w)$$
$$\hat{a} = \arg \max_{a \in \{0,1\}} L_{a}(w_{O})$$
$$w_{G_{\hat{a}}} = \arg \min_{w} L_{\hat{a}}(w)$$

- Since L(w) is strictly convex in w, the above can be solved efficiently.
- $\hat{a}$  is a disadvantaged under predictor  $f_{w_O}$ .

## Sub-optimal Model under $\gamma$ -EL

• Phase 2. Binary search to find the fair predictor

$$\mathsf{g}(\beta) := \mathsf{L}_{\hat{\mathfrak{s}}}((1-\beta)\mathsf{w}_{\mathsf{O}} + \beta\mathsf{w}_{\mathsf{G}_{\hat{\mathfrak{s}}}}) - \mathsf{L}_{1-\hat{\mathfrak{s}}}((1-\beta)\mathsf{w}_{\mathsf{O}} + \beta\mathsf{w}_{\mathsf{G}_{\hat{\mathfrak{s}}}})$$

 $h(\beta) := L((1-\beta)w_O + \beta w_{G_{\hat{s}}})$ 

### Theorem

Under Assumption 1 and 2,

- 1. There exists  $\beta_0 \in [0,1]$  such that  $g(\beta_0) = 0$
- 2.  $h(\beta)$  is strictly increasing in  $\beta \in [0, 1]$

3.  $g(\beta)$  is strictly decreasing in  $\beta \in [0, 1]$ 

- If we start from w<sub>O</sub> and move toward w<sub>G<sub>s</sub></sub> along a straight line, the overall loss increases and the disparity between two groups decreases until we reach (1 − β<sub>0</sub>)w<sub>O</sub> + β<sub>0</sub>w<sub>G<sub>s</sub></sub>
- Since g(β) is strictly decreasing function, β<sub>0</sub> can be found using binary search.

## Sub-optimal Model under $\gamma$ -EL

Algorithm 3 Sub-optimal solution to optimization (1) Input:  $w_{G_{\hat{\alpha}}}, w_O, \epsilon, \gamma$ **Initialization:**  $g_{\gamma}(\beta) = g(\beta) - \gamma, i = 0, \beta_{start}^{(0)} = 0,$  $\beta_{end}^{(0)} = 1$ 1: if  $g_{\gamma}(0) \leq 0$  then 2:  $\boldsymbol{w} = \boldsymbol{w}_{O}$ , and go to line 13; 3: end if 4: while  $\beta_{end}^{(i)} - \beta_{start}^{(i)} > \epsilon$  do 5:  $\beta_{mid}^{(i)} = (\beta_{start}^{(i)} + \beta_{end}^{(i)})/2;$ 6: if  $g_{\gamma}(\beta_{mid}^{(i)}) \ge 0$  then  $\beta_{start}^{(i+1)} = \beta_{mid}^{(i)}, \beta_{end}^{(i+1)} = \beta_{end}^{(i)};$ 7: 8: else  $\beta_{start}^{(i+1)} = \beta_{start}^{(i)}, \ \beta_{cmd}^{(i+1)} = \beta_{mid}^{(i)};$ Q٠ end if 10: 11: end while 12:  $\underline{w} = (1 - \beta_{mid}^{(i)}) w_O + \beta_{mid}^{(i)} w_{G_{\hat{n}}};$ 13: Output: w

### Theorem

Assume that Assumption 1 and 2 hold, and let  $g_{\gamma}(\beta) = g(\beta) - \gamma$ . If  $g_{\gamma}(0) \leq 0$ , then  $w_{O}$  satisfies the  $\gamma$ -EL fairness; if  $g_{\gamma}(0) > 0$ , then  $\lim_{i\to\infty} \beta_{mid}^{(i)} = \beta_{mid}^{(\infty)}$  exits, and  $(1 - \beta_{mid}^{(\infty)})w_{O} + \beta_{mid}^{(\infty)}w_{G_{\hat{s}}}$  satisfies the  $\gamma$ -EL fairness constraint.

## Sub-optimal Model under $\gamma$ -EL

• Upper bound of the expected loss of  $f_{\underline{w}}$ 

### Theorem

Under Assumption 1 and 2, we have the following :

 $L(\underline{w}) \leq \max_{a \in \{0,1\}} L_a(w_0)$ . That is, the expected loss of  $f_{\underline{w}}$  is not worse than the loss of the disadvantaged group under predictor  $f_{w_0}$ .

• Learning with Finite Samples

$$\hat{L}(w) = \frac{1}{n} \sum_{i=1}^{n} I(Y_i, f_w(X_i)),$$
$$\hat{L}_a(w) = \frac{1}{n_a} \sum_{i:A_i=a} I(Y_i, f_w(X_i))$$

$$\hat{w} = \arg\min_{w} \hat{L}(w), \quad s.t. \quad |\hat{L}_0(w) - \hat{L}_1(w)| \le \hat{\gamma}$$
 (3)

Solving (3) using  $\gamma$  and empirical loss is equivalent to solving (1) if the number of data points from each group is sufficiently large.

• To train a deep model under the equalized loss fairness notion, we can take advantage of **Algorithm 2 for fine-tuning under EL** as long as the the objective function is convex with respect to the parameters of the output layer.

### • Baselines : PM, LinRe, FairBatch

• Overall loss and loss difference between two demographic groups

| function in this example is the mean squared error loss. |                                |                     |                     |  |  |
|----------------------------------------------------------|--------------------------------|---------------------|---------------------|--|--|
|                                                          |                                | $\gamma = 0$        | $\gamma = 0.1$      |  |  |
| Md                                                       | test loss                      | $0.9246 \pm 0.0083$ | $0.9332 \pm 0.0101$ |  |  |
|                                                          | test $ \hat{L}_0 - \hat{L}_1 $ | $0.1620 \pm 0.0802$ | $0.1438 \pm 0.0914$ |  |  |
| LinRe                                                    | test loss                      | $0.9086 \pm 0.0190$ | $0.8668 \pm 0.0164$ |  |  |
|                                                          | test $ \hat{L}_0 - \hat{L}_1 $ | $0.2687 \pm 0.0588$ | $0.2587 \pm 0.0704$ |  |  |
| Fair<br>Batch                                            | test loss                      | $0.8119 \pm 0.0316$ | $0.8610 \pm 0.0884$ |  |  |
|                                                          | test $ \hat{L}_0 - \hat{L}_1 $ | $0.2862 \pm 0.1933$ | $0.2708 \pm 0.1526$ |  |  |
| ours<br>Alg 2                                            | test loss                      | $0.9186 \pm 0.0179$ | $0.8556 \pm 0.0217$ |  |  |
|                                                          | test $ \hat{L}_0 - \hat{L}_1 $ | $0.0699 \pm 0.0469$ | $0.1346 \pm 0.0749$ |  |  |
| ours<br>Alg 3                                            | test loss                      | $0.9522 \pm 0.0209$ | $0.8977 \pm 0.0223$ |  |  |
|                                                          | test $ \hat{L}_0 - \hat{L}_1 $ | $0.0930 \pm 0.0475$ | $0.1437 \pm 0.0907$ |  |  |

Table 1: Linear repression model under EL fairness. The loss

Table 2: Logistic Regression model under EL fairness. The loss function in this example is binary cross entrory loss.

|               |                                | $\gamma = 0$        | $\gamma = 0.1$      |
|---------------|--------------------------------|---------------------|---------------------|
| Md            | test loss                      | $0.5594 \pm 0.0101$ | $0.5404 \pm 0.0046$ |
|               | test $ \hat{L}_0 - \hat{L}_1 $ | $0.0091 \pm 0.0067$ | $0.0892 \pm 0.0378$ |
| LinRe         | test loss                      | $0.3468 \pm 0.0013$ | $0.3441 \pm 0.0012$ |
|               | test $ \hat{L}_0 - \hat{L}_1 $ | $0.0815 \pm 0.0098$ | $0.1080 \pm 0.0098$ |
| Pair<br>Batch | test loss                      | $1.5716 \pm 0.8071$ | $1.2116 \pm 0.8819$ |
|               | test $ \hat{L}_0 - \hat{L}_1 $ | $0.6191 \pm 0.5459$ | $0.3815 \pm 0.3470$ |
| Ours<br>Alg2  | test loss                      | $0.3516 \pm 0.0015$ | $0.3435 \pm 0.0012$ |
|               | test $ \hat{L}_0 - \hat{L}_1 $ | $0.0336 \pm 0.0075$ | $0.1110 \pm 0.0140$ |
| Ours<br>Alg3  | test loss                      | $0.3521 \pm 0.0015$ | $0.3377 \pm 0.0015$ |
|               | test $ \hat{L}_0 - \hat{L}_1 $ | $0.0278 \pm 0.0075$ | $0.1068 \pm 0.0138$ |

Table 3: Neural Network training under EL fairness. The loss function in this example is the mean squared error loss.

|               |                                | $\gamma = 0$        | $\gamma = 0.1$      |  |
|---------------|--------------------------------|---------------------|---------------------|--|
| М             | test loss                      | $0.9490 \pm 0.0584$ | $0.9048 \pm 0.0355$ |  |
|               | test $ \hat{L}_0 - \hat{L}_1 $ | $0.1464 \pm 0.1055$ | $0.1591 \pm 0.0847$ |  |
| LinRe         | test loss                      | $0.8489 \pm 0.0195$ | $0.8235 \pm 0.0165$ |  |
|               | test $ \hat{L}_0 - \hat{L}_1 $ | $0.6543 \pm 0.0322$ | $0.5595 \pm 0.0482$ |  |
| Fair<br>Batch | test loss                      | $0.9012 \pm 0.1918$ | $0.8638 \pm 0.0863$ |  |
|               | test $ \hat{L}_0 - \hat{L}_1 $ | $0.2771 \pm 0.1252$ | $0.1491 \pm 0.0928$ |  |
| ours<br>Alg 2 | test loss                      | $0.9117 \pm 0.0172$ | $0.8519 \pm 0.0195$ |  |
|               | test $ \hat{L}_0 - \hat{L}_1 $ | $0.0761 \pm 0.0498$ | $0.1454 \pm 0.0749$ |  |
| ours<br>Alg 3 | test loss                      | $0.9427 \pm 0.0190$ | $0.8908 \pm 0.0209$ |  |
|               | test $ \hat{L}_0 - \hat{L}_1 $ | $0.0862 \pm 0.0555$ | $0.1423 \pm 0.0867$ |  |