Achieving Counterfactual Fairness for Anomaly Detection

Kyungseon Lee, Choeun Kim, Hankyo Jung March 21, 2024

Seoul National University

Outline

1 Introduction

2 Related Work

3 Methodology

Introduction

► Existing fair anomaly detection approaches mainly focus on association-based fairness notions.

- 2 Contribution
 - ► CFAD model: Counterfactually fair anomaly detection.

Related Work

1 Counterfactual fairness.

► A distribution over possible predictions for an individual should remain unchanged in a world where an individual's protected attributes had been different in a causal sense.

2 Definition

► (Counterfactual fairness). Predictor \hat{Y} is counterfactually fair if under any context X = x and A = a,

$$P\left(\hat{Y}_{A\leftarrow a}(U)=y\mid X=x, A=a\right)=P\left(\hat{Y}_{A\leftarrow a'}(U)=y\mid X=x, A=a\right),$$

for all y and for any value a' attainable by A.

Related Work

Definition

$$P\left(\hat{Y}_{A\leftarrow a}(U)=y\mid X=x, A=a\right)=P\left(\hat{Y}_{A\leftarrow a'}(U)=y\mid X=x, A=a\right),$$

2 Intervention on variable V_i

- substitution of equation $V_i = f_i (pa_i, U_{pa_i})$ with the equation $V_i = v$

3 Counterfactual

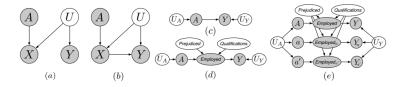
- $Y_{A\leftarrow a}(u)$ or Y_a : the value of Y if A had taken value a Causal model is defined by (U, V, F)

► V : observable variables

 \blacktriangleright U : set of latent background variable, which are factors not caused by V

▶ *F* is a set of functions $\{f_1, \ldots, f_n\}$ such that $V_i = f_i(pa_i, U_{pa_i})$ where $pa_i \subseteq V \setminus \{V_i\}, U_{pa_i} \subseteq U$

 \blacktriangleright *pa_i* refers to the "parents" of *V_i*



 \blacktriangleright V : observable variables

 \blacktriangleright U : set of latent background variable, which are factors not caused by V

▶ *F* is a set of functions $\{f_1, \ldots, f_n\}$ such that $V_i = f_i(pa_i, U_{pa_i})$ where $pa_i \subseteq V \setminus \{V_i\}, U_{pa_i} \subseteq U$

- ▶ pa_i refers to the "parents" of V_i
- ► A : sensitive attributes

Methodology

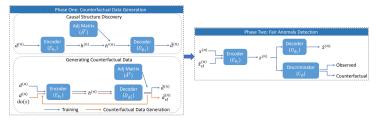


Fig. 1: Framework of CFAD

- Causal Structure Discovery
- **2** Generating Counterfactual Data
- **③** Fair Anomaly Detection

Methodology

Fair Anomaly Detection

- $\textbf{1} \ \theta_2: \text{ Encoder model parameters}$
- **2** ϕ_2 : Decoder model parameters
- **3** D_{ϕ_2} : Decoder
- **6** $(d^{(n)})_{n=1}^{N} = [s^{(n)}, x^{(n)}]$: A training set
- **6** $s^{(n)}$: A binary sensitive variable
- $x^{(n)}$: All other variables
- **8** C_{ψ} : Discriminator
- **9** $z^{(n)}$: The hidden representations
- $\mathbf{\oplus} g(x)$: Anomaly score function
- $x_{cf}^{(n)}$: Generated counterfactual data

Counterfactual fairness is defined as

Definition

An anomaly detection model is counterfactually fair if for each individual *n* we have $g(x^{(n)}) = g(x_{cf}^{(n)})$.

Methodology

Fair Anomaly Detection

Objective function of AE

$$\mathcal{L}_{\text{AE}}\left(\theta_{2},\phi_{2}\right) = \frac{1}{2N} \sum_{n=1}^{N} \left\| d^{(n)} - D_{\phi_{2}} \circ E_{\theta_{2}}\left(x^{(n)}\right) \right\|_{2}^{2}$$

$$\min_{\theta_{2},\phi_{2}} \max_{\psi} \mathcal{L}_{AE} \left(\theta_{2},\phi_{2} \right) + \lambda \mathcal{L}_{C} \left(\theta_{2},\psi \right),$$

2 Objective function of discrimminator

$$\mathcal{L}_{\mathrm{C}}\left(\theta_{2},\psi\right) = \frac{1}{N} \sum_{n=1}^{N} \left[\log\left(C_{\psi}\left(z^{(n)}\right)\right) + \log\left(1 - C_{\psi}\left(z^{(n)}_{\mathrm{cf}}\right)\right) \right]$$

3 Anomaly score

$$g(x) = \|x - D_{\phi_2} \circ E_{\theta_2}(x)\|_2^2.$$
 10

Experiment

Datasets & evaluation metric

	Synthe	tic	Adul	t	COMPAS		
	Training	Test	Training	Test	Training	Test	
Normal $(Y=0)$	12000	4000	12000	4000	2000	1283	
Abnormal (Y=1)	N/A	400	N/A	800	N/A	384	

Table 1: Statistics of datasets.

- Datasets: We conduct experiments on a synthetic dataset and two real-world datasets, Adult and COMPAS.
- Synthetic Dataset: We first build a synthetic dataset with 21 variables where we can obtain the ground truth of counterfactuals.
- Evaluation metrics: AUC, PRAUC, Macro F1-score

Macro F1 =
$$\frac{1}{N} \sum_{i=1}^{N} \text{ F1}_i$$

Experiment

Table 2: Anomaly detection on synthetic and real datasets with threshold $\tau = 0.95$. For AUC-PR, AUC-ROC and Macro-F1, the higher the value the better the effectiveness; for Changing Ratio, the lower the value the better the fairness.

Method	Synthetic Dataset			Adult Dataset				COMPAS Dataset				
	AUC-PR			Changing Ratio		AUC-ROC	Macro-F1	Changing Ratio		AUC-ROC	Macro-F1	Changing Ratio
PCA	0.992	0.999	0.908	0.478	0.238	0.582	0.476	0.261	0.365	0.642	0.595	0.268
OC-SVM	0.776	0.953	0.477	0.399	0.282	0.638	0.482	0.285	0.337	0.593	0.488	0.376
iForest	0.190	0.693	0.570	0.271	0.312	0.658	0.570	0.279	0.311	0.567	0.564	0.415
AE	0.957	0.996	0.883	0.461	0.349	0.640	0.608	0.590	0.344	0.616	0.581	0.407
DCFOD	0.383	0.832	0.721	0.212	0.249	0.623	0.533	0.071	0.260	0.569	0.466	0.067
FairOD	0.580	0.873	0.689	0.261	0.222	0.621	0.531	0.131	0.265	0.548	0.493	0.068
CFAD	0.947	0.996	0.930	0.199	0.319	0.589	0.576	0.057	0.314	0.596	0.539	0.049

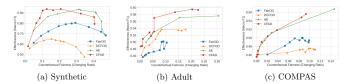


Fig. 5: Trade-off between effectiveness and fairness.

• Counterfactual fairness metric

changing ratio =
$$\frac{\sum_{n=1}^{N} \mathbb{1}\left[\hat{y}^{(n)} \neq \hat{y}_{cf}^{(n)}\right]}{N}$$

Conclusion

• CFAD is able to effectively detect anomalies and also ensure counterfactual fairness.