SimFair: A Unified Framework for Fairness-Aware Multi-Label Classification (AAAI 2023) Liu et. al.

Reviewer: Jihu Lee, Jinwon Park

IDEA lab Department of Statistics Seoul National University

March, 21, 2024

Introduction

2 Methodology

B Experiments

- 一司

E

Examples

- An applicant may apply for multiple positions
- Undergraduates submit applications to multiple programs when applying to graduate schools
- Target label: Admission decision of each position

Simple Approach

- Decompose into multiple binary classification
- Ignores the correlations among labels
 - Applicants usually apply for positions with similar requirements of skill sets and experiences

- No existing work to define fairness directly in the context of multi-label classification
- Proposed framework s_{γ} -SimFair unifies DP and EOp
- It works even when imbalanced label distributions exist

1 Introduction

B Experiments

Jihu Lee, Jinwon Park (SNU)

- 一司

E

- Samples: $\mathcal{D} = \left\{ \left(\boldsymbol{x}^{(i)}, a^{(i)}, \boldsymbol{y}^{(i)} \right) \right\}_{i=1}^{N}$
- $\boldsymbol{x}^{(i)} \in \mathcal{X} = \mathbb{R}^M$, $a^{(i)} \in \mathcal{A} = \{1, \dots, K\}$, $\boldsymbol{y}^{(i)} \in \mathcal{Y} = \{0, 1\}^L$
- $(\boldsymbol{x}, a, \boldsymbol{y}) \sim p$
- Classifier: $h = f \circ g : \mathcal{X} \rightarrow [0, 1]^L \rightarrow \mathcal{Y}$
- Advantaged Label: y_{adv}
 - Only favorable outcomes present
 - Ex) received offers of postion A and position B from job screening example

DP and EOp

- DP: $\hat{y} \perp a$
- EOp: $\hat{\boldsymbol{y}} \bot a | \boldsymbol{y}_{\mathsf{adv}}$

Proposition (0.1)

For a multi-label classifier that takes the form $h = f \circ g$, where $\tilde{y} = g(x)$ is the predicted probability and $\hat{y} = f(\tilde{y})$ is computed elementwisely, DP and EOp hold if for any $k \in A$

$$DP : \mathbb{E} \left[\tilde{\boldsymbol{y}} | a = k \right] = \mathbb{E} \left[\tilde{\boldsymbol{y}} \right]$$

$$EOp : \mathbb{E} \left[\tilde{\boldsymbol{y}} | a = k, \boldsymbol{y} = \boldsymbol{y}_{adv} \right] = \mathbb{E} \left[\tilde{\boldsymbol{y}} | \boldsymbol{y} = \boldsymbol{y}_{adv} \right]$$
(1)

Estimation

$$\mathbb{E}[\tilde{\boldsymbol{y}}|a=k] \approx \frac{\sum_{i=1}^{N} \tilde{\boldsymbol{y}}^{(i)} \mathbf{1} \left(a^{(i)}=k\right)}{\sum_{i=1}^{N} \mathbf{1} \left(a^{(i)}=k\right)}$$
(2)
$$\mathbb{E}[\tilde{\boldsymbol{y}}|a=k, \boldsymbol{y}=\boldsymbol{y}_{\mathsf{adv}}] \approx \frac{\sum_{i=1}^{N} \tilde{\boldsymbol{y}}^{(i)} \mathbf{1} \left(a^{(i)}=k\right) \mathbf{1} \left(\boldsymbol{y}=\boldsymbol{y}_{\mathsf{adv}}\right)}{\sum_{i=1}^{N} \mathbf{1} \left(a^{(i)}=k\right) \mathbf{1} \left(\boldsymbol{y}=\boldsymbol{y}_{\mathsf{adv}}\right)}$$
(3)

• most labels only associate with few samples \rightarrow additional challenges for EOp estimation

э

s_{γ} -SimFair

EOp (Eq. (1)) is equivalent with

$$\frac{\mathbb{E}\left[\tilde{\boldsymbol{y}}\mathbf{1}\left(\boldsymbol{y}=\boldsymbol{y}_{\mathsf{adv}}\right)\right]}{\mathbb{E}\left[\mathbf{1}\left(\boldsymbol{y}=\boldsymbol{y}_{\mathsf{adv}}\right)\right]} = \frac{\mathbb{E}\left[\tilde{\boldsymbol{y}}\mathbf{1}\left(\boldsymbol{a}=\boldsymbol{k}\right)\mathbf{1}\left(\boldsymbol{y}=\boldsymbol{y}_{\mathsf{adv}}\right)\right]}{\mathbb{E}\left[\mathbf{1}\left(\boldsymbol{a}=\boldsymbol{k}\right)\mathbf{1}\left(\boldsymbol{y}=\boldsymbol{y}_{\mathsf{adv}}\right)\right]}$$
(4)

Definition 1 (s-SimFair)

Given a similarity function $s: \mathcal{Y} \times \mathcal{Y} \rightarrow [0, 1]$, a multi-label classifier h satisfiew Similarity *s*-induced Fairness if for $\forall k \in \mathcal{A}$,

$$\frac{\mathbb{E}\left[\tilde{\boldsymbol{y}}s\left(\boldsymbol{y},\boldsymbol{y}_{\mathsf{adv}}\right)\right]}{\mathbb{E}\left[s\left(\boldsymbol{y},\boldsymbol{y}_{\mathsf{adv}}\right)\right]} = \frac{\mathbb{E}\left[\tilde{\boldsymbol{y}}\mathbf{1}\left(a=k\right)s\left(\boldsymbol{y},\boldsymbol{y}_{\mathsf{adv}}\right)\right]}{\mathbb{E}\left[\mathbf{1}\left(a=k\right)s\left(\boldsymbol{y},\boldsymbol{y}_{\mathsf{adv}}\right)\right]}$$
(5)

$$\begin{split} \mathsf{Jac}(\boldsymbol{y},\boldsymbol{y}_{\mathsf{adv}}) &= \frac{|\mathsf{cate}(\boldsymbol{y}) \cap \mathsf{cate}(\boldsymbol{y}_{\mathsf{adv}})|}{|\mathsf{cate}(\boldsymbol{y}) \cup \mathsf{cate}(\boldsymbol{y}_{\mathsf{adv}})|} \\ s_{\gamma}(\boldsymbol{y},\boldsymbol{y}_{\mathsf{adv}}) &= \exp\left(\gamma\left(\mathsf{Jac}\left(\boldsymbol{y},\boldsymbol{y}_{\mathsf{adv}}\right) - 1\right)\right) \end{split}$$

1 DP and EOP are special cases of s_{γ} -SimFair

- $s \equiv c \rightarrow \mathsf{DP}$
- $s(\boldsymbol{y}, \boldsymbol{y}') = \mathbf{1}\left(\boldsymbol{y}, \boldsymbol{y}'\right) \rightarrow \mathsf{EOp}$
- **2** s_{γ} -SimFair helps achieve DP and EOp
 - γ sufficiently small \rightarrow small DP violation
 - γ sufficiently large \rightarrow small EOp violation

Violation of s_{γ} -SimFair

$$\sum_{k=1}^{K} \left\| \frac{\mathbb{E}\left[\tilde{\boldsymbol{y}}s_{\gamma}(\boldsymbol{y}, \boldsymbol{y}_{\mathsf{adv}})\right]}{\mathbb{E}\left[s_{\gamma}(\boldsymbol{y}, \boldsymbol{y}_{\mathsf{adv}})\right]} - \frac{\mathbb{E}\left[\tilde{\boldsymbol{y}}\mathbf{1}\left(a=k\right)s_{\gamma}(\boldsymbol{y}, \boldsymbol{y}_{\mathsf{adv}})\right]}{\mathbb{E}\left[\mathbf{1}\left(a=k\right)s_{\gamma}(\boldsymbol{y}, \boldsymbol{y}_{\mathsf{adv}})\right]} \right\|$$
(6)

Objective

$$\min_{h} l_{\mathsf{mlc}}(h) + \lambda l_{s_{\gamma}(\boldsymbol{y}, \boldsymbol{y}_{\mathsf{adv}})}(h) \tag{7}$$

Image: A matrix

E

Combination with a Backbone Model (MPVAE)

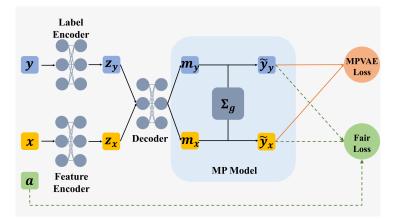


Figure 1: Framework of training MPVAE with fairness regulrization. Both probability vectors \tilde{y} on two brancehs are used to construct the s_{γ} -SimFair regularizer

1 Introduction

2 Methodology

- 一司

E

- Adult
 - Label: income, workclass, occupation
 - Sensitive: binarized age
- Credit
 - Label: default payments, education level
 - Sensitive: gender

э

Baselines

- MPVAE with No regularizer
- MPVAE with DP regularizer
- MPVAE with EOp regularizer

Evaluation metrics

• micro-F1, macro-F1, example-F1

э

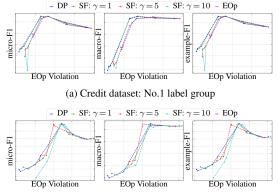
	$oldsymbol{y}_{adv}$	DP	$s_{0.1}$ -SF	$s_{0.5}$ -SF	s_1 -SF	s_5 -SF	s_{10} -SF	EOp
Adult	100%	0.11^{*}	0.12	0.12	0.13	0.18	0.17	0.17^{*}
	70%	0.11	0.11	0.12	0.13	0.18	0.18	0.17
	30%	0.10	0.10	0.11	0.12	0.17	0.18	0.17
	10%	0.10	0.10	0.10	0.11	0.14	0.16	0.17
	5%	0.10	0.10	0.10	0.11	0.15	0.23	0.27
Credit	100%	0.03^{*}	0.03	0.03	0.03	0.03	0.03	0.03*
	70%	0.03	0.03	0.03	0.03	0.03	0.04	0.04
	30%	0.02	0.02	0.02	0.02	0.03	0.03	0.03
	10%	0.02	0.02	0.02	0.02	0.03	0.04	0.04
	5%	0.02	0.02	0.02	0.02	0.03	0.04	0.05

Figure 2: Varying the numbers of samples in the advantaged group to different levels. Ground truth is marked with asterisk. More stable EOp estimates when EOp estimator fails.

	$ oldsymbol{y}_{adv} $	Metric	Regularzier					
			DP	s_1 -SF	s_5 -SF	s_{10} -SF	EOp	None
Adult	No.1	DP EOp	0.038 0.051	0.031 0.042	0.038 0.030	0.043 0.034	0.045 0.035	0.111 0.161
	No.18	DP EOp	0.038 0.076	0.038 0.072	0.043 0.037	0.045 0.027	0.094 0.066	0.111 0.095
Credit	No.1	DP EOp	0.018 0.026	0.018 0.026	0.017 0.025	0.018 0.025	0.018 0.026	0.029 0.038
	No.9	DP EOp	0.018 0.202	0.018 0.192	0.019 0.193	0.019 0.197	0.030 0.241	0.030 0.241

Figure 3: DP and EOp violations of MPVAE trained with such regularizers. Best results are in bold.

Fairness-Accuracy Tradeoff



(b) Credit dataset: No.9 label group

Figure 4: EOp-accuracy tradeoffs on Credit dataset. EOp regularizer is unstable and ineffective when the advantaged group is small.

3

イロト イポト イヨト イヨト