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Multi-Label Classification

Examples
• An applicant may apply for multiple positions
• Undergraduates submit applications to multiple programs when

applying to graduate schools
• Target label: Admission decision of each position

Simple Approach
• Decompose into multiple binary classification
• Ignores the correlations among labels

• Applicants usually apply for positions with similar requirements of skill
sets and experiences
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Fairness in Multi-Label Classification

• No existing work to define fairness directly in the context of
multi-label classification

• Proposed framework sγ-SimFair unifies DP and EOp
• It works even when imbalanced label distributions exist
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Notations

• Samples: D =
{(

x(i), a(i),y(i)
)}N

i=1

• x(i) ∈ X = RM , a(i) ∈ A = {1, . . . ,K}, y(i) ∈ Y = {0, 1}L

• (x, a,y) ∼ p

• Classifier: h = f ◦ g : X→ [0, 1]L→Y

• Advantaged Label: yadv
• Only favorable outcomes present
• Ex) received offers of postion A and position B from job screening

example

Jihu Lee, Jinwon Park (SNU) sγ -SimFair March, 21, 2024 6 / 19



DP and EOp

• DP: ŷ⊥a

• EOp: ŷ⊥a|yadv

Proposition (0.1)
For a multi-label classifier that takes the form h = f ◦ g, where ỹ = g(x) is
the predicted probability and ŷ = f(ỹ) is computed elementwisely, DP and
EOp hold if for any k ∈ A

DP : E [ỹ|a = k] = E [ỹ]

EOp : E [ỹ|a = k,y = yadv] = E [ỹ|y = yadv]
(1)
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DP and EOp

Estimation

E[ỹ|a = k] ≈
∑N

i=1 ỹ
(i)1

(
a(i) = k

)∑N
i=1 1

(
a(i) = k

) (2)

E[ỹ|a = k,y = yadv] ≈
∑N

i=1 ỹ
(i)1

(
a(i) = k

)
1 (y = yadv)∑N

i=1 1
(
a(i) = k

)
1 (y = yadv)

(3)

• most labels only associate with few samples → additional challenges
for EOp estimation
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sγ-SimFair

EOp (Eq. (1)) is equivalent with

E [ỹ1 (y = yadv)]

E [1 (y = yadv)]
=

E [ỹ1 (a = k)1 (y = yadv)]

E [1 (a = k)1 (y = yadv)]
(4)

Definition 1 (s-SimFair)
Given a similarity function s : Y × Y→ [0, 1], a multi-label classifier h
satisfiew Similarity s-induced Fairness if for ∀k ∈ A,

E [ỹs (y,yadv)]

E [s (y,yadv)]
=

E [ỹ1 (a = k) s (y,yadv)]

E [1 (a = k) s (y,yadv)]
(5)

Jac(y,yadv) =
|cate(y) ∩ cate(yadv)|
|cate(y) ∪ cate(yadv)|

sγ(y,yadv) = exp (γ (Jac (y,yadv)− 1))
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sγ-SimFair Unifies DP and EOp

1 DP and EOP are special cases of sγ-SimFair
• s ≡ c → DP
• s(y,y′) = 1 (y,y′) → EOp

2 sγ-SimFair helps achieve DP and EOp
• γ sufficiently small → small DP violation
• γ sufficiently large → small EOp violation
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Training

Violation of sγ-SimFair

lsγ(y,yadv)(h) =

K∑
k=1

∥∥∥∥E [ỹsγ(y,yadv)]

E [sγ(y,yadv)]
− E [ỹ1 (a = k) sγ(y,yadv)]

E [1 (a = k) sγ(y,yadv)]

∥∥∥∥ (6)

Objective
min
h

lmlc(h) + λlsγ(y,yadv)(h) (7)
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Combination with a Backbone Model (MPVAE)

Figure 1: Framework of training MPVAE with fairness regulrization. Both
probability vectors ỹ on two brancehs are used to construct the sγ-SimFair
regularizer
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Datasets

• Adult
• Label: income, workclass, occupation
• Sensitive: binarized age

• Credit
• Label: default payments, education level
• Sensitive: gender

Jihu Lee, Jinwon Park (SNU) sγ -SimFair March, 21, 2024 14 / 19



Settings

Baselines
• MPVAE with No regularizer
• MPVAE with DP regularizer
• MPVAE with EOp regularizer

Evaluation metrics
• micro-F1, macro-F1, example-F1
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Estimate DP and EOp with sγ-SimFair

Figure 2: Varying the numbers of samples in the advantaged group to different
levels. Ground truth is marked with asterisk. More stable EOp estimates when
EOp estimator fails.
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Performance of Regularization

Figure 3: DP and EOp violations of MPVAE trained with such regularizers. Best
results are in bold.
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Fairness-Accuracy Tradeoff

Figure 4: EOp-accuracy tradeoffs on Credit dataset. EOp regularizer is unstable
and ineffective when the advantaged group is small.
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